त्रिभुज $ABC$ में, जिसका कोण $B$ समकोण है, यदि $\tan A =\frac{1}{\sqrt{3}}$, तो निम्नलिखित के मान ज्ञात कीजिए:

$(i)$ $\sin A \cos C+\cos A \sin C$

$(ii)$ $\cos A \cos C-\sin A \sin C$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$\tan A =\frac{1}{\sqrt{3}}$

$\frac{ BC }{ AB }=\frac{1}{\sqrt{3}}$

If $B C$ is $k$, then $A B$ will be $\sqrt{3} k,$ where $k$ is a positive integer.

$\ln \triangle ABC ,$

$-A C^{2}=A B^{2}+B C^{2}$

$(\sqrt{3} k)^{2}+(k)^{2}$

$=3 k^{2}+k^{2}=4 k^{2}$

$AC =2 k$

$\sin A=\frac{\text { Side opposite to } \angle A }{\text { Hypotenuse }}=\frac{ BC }{ AC }=\frac{k}{2 k}=\frac{1}{2}$

$\cos A=\frac{\text { Side adjacent to } \angle A }{\text { Hypotenuse }}=\frac{ AB }{ AC }=\frac{\sqrt{3} k}{2 k}=\frac{\sqrt{3}}{2}$

$\sin C=\frac{\text { Side opposite to } \angle C }{\text { Hypotenuse }}=\frac{ AB }{ AC }=\frac{\sqrt{3} k}{2 k}=\frac{\sqrt{3}}{2}$

$\cos C=\frac{\text { Side adjacent to } \angle C }{\text { Hypotenuse }}=\frac{ BC }{ AC }=\frac{k}{2 k}=\frac{1}{2}$

$(i)$ $\sin A \cos C+\cos A \sin C$

$=\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)+\left(\frac{\sqrt{3}}{2}\right)\left(\frac{\sqrt{3}}{2}\right)=\frac{1}{4}+\frac{3}{4}$

$=\frac{4}{4}=1$

$(ii)$ $\cos A \cos C-\sin A \sin C$

$=\left(\frac{\sqrt{3}}{2}\right)\left(\frac{1}{2}\right)-\left(\frac{1}{2}\right)\left(\frac{\sqrt{3}}{2}\right)=\frac{\sqrt{3}}{4}-\frac{\sqrt{3}}{4}=0$

1043-s14

Similar Questions

बताइए कि निम्नलिखित सत्य हैं या असत्य हैं। कारण सहित अपने उत्तर की पुष्टि कीजिए।

$\theta$ में वृद्धि होने के साथ $\sin \theta$ के मान में भी वृद्धि होती है।

यदि $15 \cot A =8$ हो तो $\sin\, A$ और $sec\, A$ का मान ज्ञात कीजिए।

$(1+\tan \theta+\sec \theta)(1+\cot \theta-\operatorname{cosec} \theta)=..........$

$\frac{2 \tan 30^{\circ}}{1+\tan ^{2} 30^{\circ}}=$

$\Delta ABC$ में जिसका कोण $B$ समकोण है, $AB =5 \,cm$ और $\angle ACB =30^{\circ}($ देखिए आकृति $)$ भुजाओं $BC$ और $AC$ की लंबाइयाँ ज्ञात करें।