In triangle $ABC ,$ right -angled at $B ,$ if $\tan A =\frac{1}{\sqrt{3}},$ find the value of:

$(i)$ $\sin A \cos C+\cos A \sin C$

$(ii)$ $\cos A \cos C-\sin A \sin C$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$\tan A =\frac{1}{\sqrt{3}}$

$\frac{ BC }{ AB }=\frac{1}{\sqrt{3}}$

If $B C$ is $k$, then $A B$ will be $\sqrt{3} k,$ where $k$ is a positive integer.

$\ln \triangle ABC ,$

$-A C^{2}=A B^{2}+B C^{2}$

$(\sqrt{3} k)^{2}+(k)^{2}$

$=3 k^{2}+k^{2}=4 k^{2}$

$AC =2 k$

$\sin A=\frac{\text { Side opposite to } \angle A }{\text { Hypotenuse }}=\frac{ BC }{ AC }=\frac{k}{2 k}=\frac{1}{2}$

$\cos A=\frac{\text { Side adjacent to } \angle A }{\text { Hypotenuse }}=\frac{ AB }{ AC }=\frac{\sqrt{3} k}{2 k}=\frac{\sqrt{3}}{2}$

$\sin C=\frac{\text { Side opposite to } \angle C }{\text { Hypotenuse }}=\frac{ AB }{ AC }=\frac{\sqrt{3} k}{2 k}=\frac{\sqrt{3}}{2}$

$\cos C=\frac{\text { Side adjacent to } \angle C }{\text { Hypotenuse }}=\frac{ BC }{ AC }=\frac{k}{2 k}=\frac{1}{2}$

$(i)$ $\sin A \cos C+\cos A \sin C$

$=\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)+\left(\frac{\sqrt{3}}{2}\right)\left(\frac{\sqrt{3}}{2}\right)=\frac{1}{4}+\frac{3}{4}$

$=\frac{4}{4}=1$

$(ii)$ $\cos A \cos C-\sin A \sin C$

$=\left(\frac{\sqrt{3}}{2}\right)\left(\frac{1}{2}\right)-\left(\frac{1}{2}\right)\left(\frac{\sqrt{3}}{2}\right)=\frac{\sqrt{3}}{4}-\frac{\sqrt{3}}{4}=0$

1043-s14

Similar Questions

Express the ratios $\cos A ,$ tan $A$ and $\sec A$ in terms of $\sin A .$

Evaluate:

$\frac{\tan 26^{\circ}}{\cot 64^{\circ}}$

Show that:

$(i)$ $\tan 48^{\circ} \tan 23^{\circ} \tan 42^{\circ} \tan 67^{\circ}=1$

$(ii)$ $\cos 38^{\circ} \cos 52^{\circ}-\sin 38^{\circ} \sin 52^{\circ}=0$

Given $\tan A=\frac{4}{3},$ find the other trigonometric ratios of the $\angle A$

Prove the following identities, where the angles involved are acute angles for which the expressions are defined.

$\frac{1+\sec A}{\sec A}=\frac{\sin ^{2} A}{1-\cos A}$