यदि $15 \cot A =8$ हो तो $\sin\, A$ और $sec\, A$ का मान ज्ञात कीजिए।

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Consider a right-angled triangle, right-angled at $B.$

$\cot A=\frac{\text { Side adjacent to } \angle A }{\text { Side opposite to } \angle A }$

$=\frac{A B}{B C}$

It is given that,

$\cot A=\frac{8}{15}$

$\frac{A B}{B C}=\frac{8}{15}$

Let $AB$ be $8 k$. Therefore, $BC$ will be $15 k ,$ where $k$ is a positive integer.

Applying Pythagoras theorem in $\triangle ABC ,$ we obtain

$AC ^{2}= AB ^{2}+ BC ^{2}$

$=(8 k)^{2}+(15 k)^{2}$

$=64 k^{2}+225 k^{2}$

$=289 k^{2}$

$AC =17 k$

$\sin A=\frac{\text { Side opposite to } \angle A }{\text { Hypotenuse }}=\frac{ BC }{ AC }$

$=\frac{15 k}{17 k}=\frac{15}{17}$

$\sec A=\frac{\text { Hypotenuse }}{\text { Side adjacent to } \angle A }$

$=\frac{ AC }{ AB }=\frac{17}{8}$

1043-s9

Similar Questions

निम्नलिखित सर्वसमिका सिद्ध कीजिए, जहाँ वे कोण, जिनके लिए व्यंजक परिभाषित है, न्यून कोण है :

$\frac{\tan \theta}{1-\cot \theta}+\frac{\cot \theta}{1-\tan \theta}=1+\sec \theta \operatorname{cosec} \theta$

निम्नलिखित सर्वसमिका सिद्ध कीजिए, जहाँ वे कोण, जिनके लिए व्यंजक परिभाषित है, न्यून कोण है :

$\left(\frac{1+\tan ^{2} A}{1+\cot ^{2} A}\right)=\left(\frac{1-\tan A}{1-\cot A}\right)^{2}=\tan ^{2} A$

निम्नलिखित सर्वसमिका सिद्ध कीजिए, जहाँ वे कोण, जिनके लिए व्यंजक परिभाषित है, न्यून कोण है :

$\frac{1+\sec A}{\sec A}=\frac{\sin ^{2} A}{1-\cos A}$

$\sin 67^{\circ}+\cos 75^{\circ}$ को $0^{\circ}$ और $45^{\circ}$ के बीच के कोणों के त्रिकोणमितीय अनुपातों के पदों में व्यक्त कीजिए।

दिखाइए कि

$(i)$ $\tan 48^{\circ} \tan 23^{\circ} \tan 42^{\circ} \tan 67^{\circ}=1$

$(ii)$ $\cos 38^{\circ} \cos 52^{\circ}-\sin 38^{\circ} \sin 52^{\circ}=0$