निम्न चार स्थितियों में आवेशित कण मूल बिन्दू से बराबर - बराबर दूरियों पर स्थित हैं मूल बिन्दु पर विद्युत क्षेत्र के परिमाण को अधिकतम पहले लेते हुये इन्हें व्यवस्थित करें
$(i) > (ii) > (iii) > (iv)$
$(ii) > (i) > (iii) > (iv)$
$(i) > (iii) > (ii) > (iv)$
$(iv) > (iii) > (ii) > (i)$
एक आवेश के कारण इससे $3$ मी. की दूरी पर उत्पन्न विद्युत क्षेत्र $500\,N/C$ है। आवेश का परिमाण.......$\mu C$ है $\left[ {\frac{1}{{4\pi {\varepsilon _0}}} = 9 \times {{10}^9}\,\frac{{N - {m^2}}}{{{C^2}}}} \right]$
$5 \times {10^{ - 5}}\,kg$ द्रव्यमान का एक आवेशित कण ऊध्र्वाधर नीचे की ओर कार्यरत ${10^7}\,N{C^{ - 1}}$ के विद्युत क्षेत्र में संतुलित है। कण पर आवेश होगा
$L (=20 cm )$ लम्बाई के एक तार को एक अर्ध वृत्ताकार चाप के रूप में मोड़ दिया गया है। यदि इस चाप के दो समान भागों को $\pm Q$ आवेश से एकसमान आवेशित कर दिया जाय $\left[| Q |=10^{3} \varepsilon_{0}\right.$ कूलॉम जहाँ $\varepsilon_{0}$ ($SI$ मात्रक में) मुक्त आकाश की विद्युतशीलता (परावैद्युतांक) है ], तो, अर्धवृत्ताकार चाप के केन्द्र $O$ पर नेट विद्युत क्षेत्र होगा :
$50\, V/cm$ परिमाण के विद्युत क्षेत्र में एक इलेक्ट्रॉन का त्वरण हेागा (यदि इलेक्ट्रॉन के लिए $e/m = 1.76 \times {10^{11}}\,C/kg$)
$\pm 10 \,\mu C$ के दो आवेश एक-दूसरे से $5.0\, mm$ दूरी पर स्थित हैं। $(a)$ इस द्विधुव के अक्ष पर द्विध्रुव के केंद्र $O$ से चित्र $(a)$ में दशांए अनुसार, धनावेश की ओर $15 \,cm$ दूरी पर स्थित किसी बिदु $P$ पर तथा $(b)$ द्धिध्रुव के अक्ष के अभिलंबवत $O$ से, चित्र $(b)$ में दर्शाए अनुसार गुजरने वाली रेखा से $15\, cm$ दूरी पर स्थित किसी बिंदु $G$ पर विध्युत क्षेत्र ज्ञात कीजिए।