In the following four situations charged particles are at equal distance from the origin. Arrange them the magnitude of the net electric field at origin greatest first
$(i) > (ii) > (iii) > (iv)$
$(ii) > (i) > (iii) > (iv)$
$(i) > (iii) > (ii) > (iv)$
$(iv) > (iii) > (ii) > (i)$
Two charges each equal to $\eta q({\eta ^{ - 1}} < \sqrt 3 )$ are placed at the corners of an equilateral triangle of side $a$. The electric field at the third corner is ${E_3}$ where $({E_0} = q/4\pi {\varepsilon _0}{a^2})$
Four equal positive charges are fixed at the vertices of a square of side $L$. $Z$-axis is perpendicular to the plane of the square. The point $z = 0$ is the point where the diagonals of the square intersect each other. The plot of electric field due to the four charges, as one moves on the $z-$ axis.
Two point charges $q_1\,(\sqrt {10}\,\,\mu C)$ and $q_2\,(-25\,\,\mu C)$ are placed on the $x-$ axis at $x = 1\,m$ and $x = 4\,m$ respectively. The electric field (in $V/m$ ) at a point $y = 3\,m$ on $y-$ axis is, [ take ${\mkern 1mu} {\mkern 1mu} \frac{1}{{4\pi {\varepsilon _0}}} = 9 \times {10^9}{\mkern 1mu} {\mkern 1mu} N{m^2}{C^{ - 2}}{\rm{ }}$ ]
The charge distribution along the semi-circular arc is non-uniform . Charge per unit length $\lambda $ is given as $\lambda = {\lambda _0}\sin \theta $ , with $\theta $ measured as shown in figure. $\lambda_0$ is a positive constant. The radius of arc is $R$ . The electric field at the center $P$ of semi-circular arc is $E_1$ . The value of $\frac{{{\lambda _0}}}{{{ \in _0}{E_1}R}}$ is
What is called electric field intensity ? Write its $SI$ unit.