$L (=20 cm )$ लम्बाई के एक तार को एक अर्ध वृत्ताकार चाप के रूप में मोड़ दिया गया है। यदि इस चाप के दो समान भागों को $\pm Q$ आवेश से एकसमान आवेशित कर दिया जाय $\left[| Q |=10^{3} \varepsilon_{0}\right.$ कूलॉम जहाँ $\varepsilon_{0}$ ($SI$ मात्रक में) मुक्त आकाश की विद्युतशीलता (परावैद्युतांक) है ], तो, अर्धवृत्ताकार चाप के केन्द्र $O$ पर नेट विद्युत क्षेत्र होगा :

822-820

  • [JEE MAIN 2015]
  • A

    $\left( {50 \times {{10}^3}\,N/C} \right)\hat j$

  • B

    $\left( {50 \times {{10}^3}\,N/C} \right)\hat i$

  • C

    $\left( {25 \times {{10}^3}\,N/C} \right)\hat j$

  • D

    $\left( {25 \times {{10}^3}\,N/C} \right)\hat i$

Similar Questions

दो बिन्दु आवेश $20\,\mu \,C$ एवं $80\,\mu \,C$ एक-दूसरे से $10\,cm$ की दूरी पर रखे हैं। इन दोनों को जोड़ने वाली रेखा पर $20\,\mu \,C$ से कितनी दूरी पर विद्युत क्षेत्र की तीव्रता शून्य.......$m$ होगी

$5\,\mu C$ के बिन्दु आवेश से $80$ सेमी. दूर किसी बिन्दु पर विद्युत क्षेत्र की तीव्रता होगी

एक आवेशित कण $20000\, V/m$ के एकसमान ऊध्र्वाधर विद्युत क्षेत्र में संतुलन में लटका हुआ है। यदि कण का द्रव्यमान $9.6 \times {10^{ - 16}}\,kg$ है, तब कण पर आवेश एवं आधिक्य में इलेक्ट्रॉनों की संख्या क्रमश: होगी

मिलिकन तेल बूँद प्रयोग में $2.55 \times 10^{4} \,N C ^{-1}$ के नियत विध्यूत क्षेत्र के प्रभाव में $12$ इलेक्ट्रोंन आधिक्य की कोई तेल बूँद स्थिर रखी जाती है। तेल का घनत्व $1.26\, g cm ^{-3}$ है। बूँद की त्रिज्या का आकलन कीजिए $\left(g=9.81 m s ^{-2} ; e=1.60 \times 10^{-19} C \right) 1$

दो आवेश $q$ व $3 q$ वायु में ' $r$ ' दूरी पर स्थित है। $\mathrm{q}$ आवेश से $\mathrm{x}$ दूरी पर परिणामी वैद्युत क्षेत्र शून्य है। $\mathrm{x}$ का मान है

  • [JEE MAIN 2024]