एक बिन्दु आवेश $Q$, एक एकसमान रेखीय आवेश घनत्व (Linear charge density) $\lambda$ वाले अनन्त लम्बाई तके तार तथा एक एकसमान पृष्ठ आवेश घनत्व (uniform surface charge density) $\sigma$ वाले अनन्त समतल चादर के कारण $r$ दूरी पर विद्युत क्षेत्र की तीव्रतायें क्रमश: $E_1(r), E_2(r)$ तथा $E_3(r)$ हैं यदि एक दी गई दूरी $r_0$ पर $E_1\left(r_0\right)=E_2\left(r_0\right)=E_3\left(r_0\right)$ तब
$Q =4 \sigma \pi r_0^2$
$r_0=\frac{\lambda}{2 \pi \sigma}$
$E_1\left(r_0 / 2\right)=2 E_2\left(r_0 / 2\right)$
$E_2\left(r_0 / 2\right)=4 E_3\left(r_0 / 2\right)$
$10 \,cm$ त्रिज्या के किसी गोलीय चालक पर $3.2 \times 10^{-7}\, C$ आवेश एकसमान रूप से वितरित है।इस गोले के केन्द्र से $15\, cm$ दूरी पर विध्यूत क्षेत्र का परिमाण क्या है ?
$\left(\frac{1}{4 \pi \epsilon_{0}}=9 \times 10^{9} Nm ^{2} / C ^{2}\right)$
केन्द्र से $\mathrm{r}$ दूरी के साथ $\mathrm{R}$ त्रिज्या के एक एकसमान आवेशित कुचालक ठोस गोले के कारण वैद्युत क्षेत्र का अभिरेखीय परिवर्तन निम्न प्रकार प्रंदर्शित है:
गॉस प्रमेय के अनुसार अनन्त लम्बाई के सीधे तार के कारण विद्युत क्षेत्र अनुक्रमानुपाती होता है
दो $R$ व $2 R$ त्रिज्या वाले अचालक ठोस गोलको को जिन पर क्रमशः $\rho_1$ तथा $\rho_2$ एकसमान आयतन आवेश घनत्व है, एक दूसरे से स्पर्श करते हुए रखा गया है। दोंनो गोलकों के केन्द्रों से गुजरती हुई रेखा खींची जाती है। इस रेखा पर छोटे गोलक के केन्द्र से $2 R$ दूरी पर नेट विद्युत क्षेत्र शून्य है। तब अनुपात $\frac{\rho_1}{\rho_2}$ का मान हो सकता है:
प्रति इकाई आवेश $q$ वाले अनन्त लम्बी नली का उसकी अक्ष से $r$ दूरी पर वैद्युत क्षेत्र की तीव्रता होती है