${(1 + x)^n}$ के विस्तार में  $p$ वें तथा $(p + 1)$ वें पदों के गुणांक क्रमश:  $p $ व  $q$ हों, तो $p + q = $

  • A

    $n + 3$

  • B

    $n + 1$

  • C

    $n + 2$

  • D

    $n$

Similar Questions

यदि $\left(\sqrt{\frac{1}{x^{1+\log _{10} x}}}+x^{\frac{1}{12}}\right)^{6}$ के द्विपद प्रसार का चौथा पद $200$ है तथा $x>1$ है, तो $x$ का मान है 

  • [JEE MAIN 2019]

यदि धन पूर्णाकों $m$ तथा $n$ के लिए

$(1-y)^{m}(1+y)^{n}=1+a_{1} y+a_{2} y^{2}+\ldots .+a_{m-n} y^{m+n}$ तथा $a_{1}=a_{2}=10$ हैं, तो $(m+n)$ बराबर है

  • [JEE MAIN 2021]

यदि $\left(\frac{\sqrt{x}}{5^{\frac{1}{4}}}+\frac{\sqrt{5}}{x^{\frac{1}{3}}}\right)^{60}$ द्विपद प्रसार में $x ^{10}$ का गुणांक $5^{ k } l$ है जहां $l, k \in N$ और $l$ की 5 सह-अभाज्य संख्याऐं है तब $k$ का मान होगा।

  • [JEE MAIN 2022]

यदि ${(1 + x)^{2n}}$ के विस्तार में दूसरा, तीसरा तथा चौथा पद समान्तर श्रेणी में हैं, तो $2{n^2} - 9n + 7$ का मान होगा

$(0.99)^{5}$ के प्रसार के पहले तीन पदों का प्रयोग करते हुए इसका निकटतम मान ज्ञात कीजिए।