એક શાળાના ધોરણ $XI$ નાં $40 \%$ વિદ્યાર્થી ગણિત ભણે છે અને $30 \%$ જીવવિજ્ઞાન ભણે છે. વર્ગના $10 \%$ વિદ્યાર્થી ગણિત અને જીવવિજ્ઞાન બંને ભણે છે. આ ધોરણનો એક વિદ્યાર્થી યાદચ્છિક રીતે પસંદ કરવામાં આવે છે, તો આ વિદ્યાર્થી ગણિત અથવા જીવવિજ્ઞાન ભણતો હોય તેની સંભાવના શોધો.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let $A$ be the event in which the selected student studies Mathematics and $B$ be the event in which the selected student studies Biology.

Accordingly, $P ( A )=40 \%=\frac{40}{100}=\frac{2}{5}$

$P(B)=30 \%=\frac{30}{100}=\frac{3}{10}$

$P ( A$ and $B )=10 \%=\frac{10}{100}=\frac{1}{10}$

We know that $P ( A$ and $B )= P ( A )+ P ( B )- P ( A $ and $B )$

$\therefore P(A $ or $ B)=\frac{2}{5}+\frac{3}{10}+\frac{1}{10}=\frac{6}{10}=0.6$

Thus, the probability that the selected student will be studying Mathematics or Biology is $0.6$.

Similar Questions

$53$ રવિવાર અને $53$ સોમવાર ધરાવતા વર્ષોમાથી કોઈપણ પસંદ કરતાં, તે લીપ વર્ષ બનવાની સંભાવના કેટલી?

જો $P (A) =0.5, P (B)=0.7, P (A \cap B) =0.6$  તો  $ P   (A \cup B) = …. ($જયાં અને આપેલી ઘટનાઓ છે.$)$

જો $A$ અને $B$ બે ઘટનાઓ છે કે જેમાં $P\,(A) = 0.3$ અને $P\,(A \cup B) = 0.8$. જો $A$ અને  $B$ એ નિરપેક્ષ ઘટનાઓ હોય,તો $P(B) = $

  • [IIT 1990]

બે પાસા સ્વતંત્ર રીતે ઉછાળવામાં આવે છે. ધારો કે પહેલા પાસા પર આવેલ સંખ્યા એ બીજ પાસા પર આવેલ સંંખ્યાથી નાની હોય તે ઘટના $A$ છે, તથા પ્રથમ પાસા ૫ર યુગ્મ સંખ્યા આવે અને બીજા પાસા પર અયુગ્મ સંખ્યા આવે તે ઘટના $B$ છે.વધુમાં ધારોકે પ્રથમ પાસા પર અયુગ્મ સંખ્યા આવે અને બીજા પાસા પર યુગ્મ સંખ્યા આવે તે ઘટના  $C$ છે.તો,:

  • [JEE MAIN 2023]

જો $A$ અને  $B$ બે ઘટનાઓ છે કે જેથી $P\left( {A \cup B} \right) = P\left( {A \cap B} \right)$, તો આપેલ પૈકી કયું વિધાન અસત્ય છે .

  • [JEE MAIN 2014]