एक पाठशाला की कक्षा $XI$ के $40 \%$ विद्यार्थी गणित पढते हैं और $30 \%$ जीव विज्ञान पढते हैं। कक्षा के $10 \%$ विद्यार्थी गणित और जीव विज्ञान दोनों पढते हैं। यदि कक्षा का एक विद्यार्थी यादृच्छया चुना जाता है , तो प्रायिकता ज्ञात कीजिए कि वह गणित या जीव विज्ञान पढ़ता होगा।
Let $A$ be the event in which the selected student studies Mathematics and $B$ be the event in which the selected student studies Biology.
Accordingly, $P ( A )=40 \%=\frac{40}{100}=\frac{2}{5}$
$P(B)=30 \%=\frac{30}{100}=\frac{3}{10}$
$P ( A$ and $B )=10 \%=\frac{10}{100}=\frac{1}{10}$
We know that $P ( A$ and $B )= P ( A )+ P ( B )- P ( A $ and $B )$
$\therefore P(A $ or $ B)=\frac{2}{5}+\frac{3}{10}+\frac{1}{10}=\frac{6}{10}=0.6$
Thus, the probability that the selected student will be studying Mathematics or Biology is $0.6$.
दो विद्यार्थियों अनिल और आशिमा एक परीक्षा में प्रविष्ट हुए। अनिल के परीक्षा में उत्तीर्ण होने की प्रायिकता $0.05$ है और आशिमा के परीक्षा में उत्तीर्ण होने की प्रायिकता $0.10$ है। दोनों के परीक्षा में उत्तीर्ण होने की प्रायिकता $0.02$ है। प्रायिकता ज्ञात कीजिए कि
दोनों में से केवल एक परीक्षा में उत्तीर्ण होगा।
दो घटनाओं $A$ और $B$ के लिए $P(A) = x$, $P(B) = y,$ $P(A \cap B) = z,$ तब $P(\bar A \cap B)$ का मान है
$A$ व $B$ के एक वर्ष में मरने की प्रायिकतायें क्रमश: $p$ व $q$ हैं तो उनमें से केवल एक वर्ष के अन्त में जिन्दा रहे, इसकी प्रायिकता है
यदि $A$ तथा $B$ कोई दो घटनाएँ हों, तो उनमें से ठीक एक घटना के घटित होने की प्रायिकता है
यदि $P\,(A) = \frac{1}{4},\,\,P\,(B) = \frac{5}{8}$ तथा $P\,(A \cup B) = \frac{3}{4},$ तो $P\,(A \cap B) = $