समद्विबाहु त्रिभुज $ABC$ में, आधार $BC$ के बिन्दुओं $B$ तथा $C$ के निर्देशांक क्रमश: $(1, 2)$ तथा $(2, 1)$ हैं। यदि रेखा $AB$ का समीकरण $y = 2x$ है, तब रेखा $AC$ का समीकरण है
$y = \frac{1}{2}(x - 1)$
$y = \frac{x}{2}$
$y = x - 1$
$2y = x + 3$
${x^2} - 9{y^2} = 0$ और $x = 4$ के द्वारा निर्मित त्रिभुज है
उस बिन्दु का बिन्दुपथ जो कि सरल रेखाओं $3x + 4y - 11 = 0$ व $12x + 5y + 2 = 0$ से समान दूरी पर स्थित है एवं मूल बिन्दु के समीप है, है
बिन्दुओं $(1, 0)$ व $(2\cos \theta ,2\sin \theta )$ को जोड़ने वाली रेखा को $2 : 3$ के अनुपात में अन्त:विभाजित करने वाले बिन्दु का बिन्दुपथ होगा
रेखाओं $x + y - 4 = 0,\,$ $3x + y = 4$ तथा $x + 3y = 4$ से बना त्रिभुज है