In an isosceles triangle $ABC$, the coordinates of the points $B$ and $C$ on the base $BC$ are respectively $(1, 2)$ and $(2, 1)$. If the equation of the line $AB$ is $y = 2x$, then the equation of the line $AC$ is
$y = \frac{1}{2}(x - 1)$
$y = \frac{x}{2}$
$y = x - 1$
$2y = x + 3$
The number of integral points (integral point means both the coordinates should be integer) exactly in the interior of the triangle with vertices $(0, 0), (0, 21)$ and $(21, 0)$, is
If the equation of the locus of a point equidistant from the points $({a_1},{b_1})$ and $({a_2},{b_2})$ is $({a_1} - {a_2})x + ({b_1} - {b_2})y + c = 0$, then the value of $‘c’$ is
The locus of a point so that sum of its distance from two given perpendicular lines is equal to $2$ unit in first quadrant, is
$A(-1, 1)$, $B(5, 3)$ are opposite vertices of a square in $xy$-plane. The equation of the other diagonal (not passing through $(A, B)$ of the square is given by
Locus of the points which are at equal distance from $3x + 4y - 11 = 0$ and $12x + 5y + 2 = 0$ and which is near the origin is