$A(-1, 1)$, $B(5, 3)$ are opposite vertices of a square in $xy$-plane. The equation of the other diagonal (not passing through $(A, B)$ of the square is given by
$x - 3y + 4 = 0$
$2x - y + 3 = 0$
$y + 3x - 8 = 0$
$x + 2y - 1 = 0$
A straight the through a fixed point $(2, 3)$ intersects the coordinate axes at distinct points $P$ and $Q.$ If $O$ is the origin and the rectangle $OPRQ$ is completed, then the locus of $R$ is:
Let $B$ and $C$ be the two points on the line $y+x=0$ such that $B$ and $C$ are symmetric with respect to the origin. Suppose $A$ is a point on $y -2 x =2$ such that $\triangle ABC$ is an equilateral triangle. Then, the area of the $\triangle ABC$ is
Equations of diagonals of square formed by lines $x = 0,$ $y = 0,$$x = 1$ and $y = 1$are
The equation to the sides of a triangle are $x - 3y = 0$, $4x + 3y = 5$ and $3x + y = 0$. The line $3x - 4y = 0$ passes through
An equilateral triangle has each of its sides of length $6\,\, cm$ . If $(x_1, y_1) ; (x_2, y_2) \,\, and \,\, (x_3, y_3)$ are its vertices then the value of the determinant,${{\left| {\,\begin{array}{*{20}{c}}{{x_1}}&{{y_1}}&1\\{{x_2}}&{{y_2}}&1\\{{x_3}}&{{y_3}}&1\end{array}\,} \right|}^2}$ is equal to :