The locus of a point so that sum of its distance from two given perpendicular lines is equal to $2$ unit in first quadrant, is
$x + y + 2 = 0$
$x + y = 2$
$x - y = 2$
None of these
A straight line passing through $P(3, 1)$ meet the coordinates axes at $A$ and $B$. It is given that distance of this straight line from the origin $'O'$ is maximum. Area of triangle $OAB$ is equal to
A triangle is formed by $X -$ axis, $Y$ - axis and the line $3 x+4 y=60$. Then the number of points $P ( a, b)$ which lie strictly inside the triangle, where $a$ is an integer and $b$ is a multiple of $a$, is $...........$
Let a triangle be bounded by the lines $L _{1}: 2 x +5 y =10$; $L _{2}:-4 x +3 y =12$ and the line $L _{3}$, which passes through the point $P (2,3)$, intersect $L _{2}$ at $A$ and $L _{1}$ at $B$. If the point $P$ divides the line-segment $A B$, internally in the ratio $1: 3$, then the area of the triangle is equal to
If a variable line drawn through the point of intersection of straight lines $\frac{x}{\alpha } + \frac{y}{\beta } = 1$and $\frac{x}{\beta } + \frac{y}{\alpha } = 1$ meets the coordinate axes in $A$ and $B$, then the locus of the mid point of $AB$ is
Consider a triangle $\mathrm{ABC}$ having the vertices $\mathrm{A}(1,2), \mathrm{B}(\alpha, \beta)$ and $\mathrm{C}(\gamma, \delta)$ and angles $\angle \mathrm{ABC}=\frac{\pi}{6}$ and $\angle \mathrm{BAC}=\frac{2 \pi}{3}$. If the points $\mathrm{B}$ and $\mathrm{C}$ lie on the line $\mathrm{y}=\mathrm{x}+4$, then $\alpha^2+\gamma^2$ is equal to....................