The number of integral points (integral point means both the coordinates should be integer) exactly in the interior of the triangle with vertices $(0, 0), (0, 21)$ and $(21, 0)$, is
$133$
$190$
$233$
$105$
If in a parallelogram $ABDC$, the coordinates of $A, B$ and $C$ are respectively $(1, 2), (3, 4)$ and $(2, 5)$, then the equation of the diagonal $AD$ is
The equation of the base of an equilateral triangle is $x + y = 2$ and the vertex is $(2, -1)$. The length of the side of the triangle is
Two consecutive sides of a parallelogram are $4x + 5y = 0$ and $7x + 2y = 0.$ If the equation to one diagonal is $11x + 7y = 9,$ then the equation of the other diagonal is
Given $A(1, 1)$ and $AB$ is any line through it cutting the $x-$ axis in $B$. If $AC$ is perpendicular to $AB$ and meets the $y-$ axis in $C$, then the equation of locus of mid- point $P$ of $BC$ is
If a variable line drawn through the point of intersection of straight lines $\frac{x}{\alpha } + \frac{y}{\beta } = 1$and $\frac{x}{\beta } + \frac{y}{\alpha } = 1$ meets the coordinate axes in $A$ and $B$, then the locus of the mid point of $AB$ is