If the equation of the locus of a point equidistant from the points $({a_1},{b_1})$ and $({a_2},{b_2})$ is $({a_1} - {a_2})x + ({b_1} - {b_2})y + c = 0$, then the value of $‘c’$ is

  • [IIT 2003]
  • A

    $\frac{1}{2}(a_2^2 + b_2^2 - a_1^2 - b_1^2)$

  • B

    $a_1^2 - a_2^2 + b_1^2 - b_2^2$

  • C

    $\frac{1}{2}(a_1^2 + a_2^2 + b_1^2 + b_2^2)$

  • D

    $\sqrt {a_1^2 + b_1^2 - a_2^2 - b_2^2} $

Similar Questions

A point $P$ moves on the line $2x -3y + 4 = 0$. If $Q(1, 4)$ and $R(3, -2)$ are fixed points, then the locus of the centroid of $\Delta PQR$ is a line

  • [JEE MAIN 2019]

Given three points $P, Q, R$ with $P(5, 3)$ and $R$ lies on the $x-$ axis. If equation of $RQ$ is $x -2y = 2$ and $PQ$ is parallel to the $x-$ axis, then the centroid of $\Delta PQR$ lies on the line

The circumcentre of a triangle lies at the origin and its centroid is the mid point of the line segment joining the points $(a^2 + 1 , a^2 + 1 )$ and $(2a, - 2a)$, $a \ne 0$. Then for any $a$ , the orthocentre of this triangle lies on the line

  • [JEE MAIN 2014]

Locus of the points which are at equal distance from $3x + 4y - 11 = 0$ and $12x + 5y + 2 = 0$ and which is near the origin is

A straight line cuts off the intercepts $OA = a$ and $OB = b$ on the positive directions of $x$-axis and $y -$ axis respectively. If the perpendicular from origin $O$ to this line makes an angle of $\frac{\pi}{6}$ with positive direction of $y$-axis and the area of $\triangle OAB$ is $\frac{98}{3} \sqrt{3}$, then $a ^2- b ^2$ is equal to:

  • [JEE MAIN 2023]