The average marks of $10$ students in a class was $60$ with a standard deviation $4$ , while the average marks of other ten students was $40$ with a standard deviation $6$ . If all the $20$ students are taken together, their standard deviation will be
$5$
$7.5$
$9.8$
$11.2$
Let $n \geq 3$. A list of numbers $x_1, x, \ldots, x_n$ has mean $\mu$ and standard deviation $\sigma$. A new list of numbers $y_1, y_2, \ldots, y_n$ is made as follows $y_1=\frac{x_1+x_2}{2}, y_2=\frac{x_1+x_2}{2}$ and $y_j=x_j$ for $j=3,4, \ldots, n$.
The mean and the standard deviation of the new list are $\hat{\mu}$ and $\hat{\sigma}$. Then, which of the following is necessarily true?
The mean and the standard deviation (s.d.) of $10$ observations are $20$ and $2$ resepectively. Each of these $10$ observations is multiplied by $\mathrm{p}$ and then reduced by $\mathrm{q}$, where $\mathrm{p} \neq 0$ and $\mathrm{q} \neq 0 .$ If the new mean and new s.d. become half of their original values, then $q$ is equal to
If the mean deviation about median for the number $3,5,7,2\,k , 12,16,21,24$ arranged in the ascending order, is $6$ then the median is
Find the standard deviation of the first n natural numbers.