The mean and standard deviation of a group of $100$ observations were found to be $20$ and $3,$ respectively. Later on it was found that three observations were incorrect, which were recorded as $21,21$ and $18 .$ Find the mean and standard deviation if the incorrect observations are omitted.
Number of observations $(n)=100$
Incorrect mean $(\bar{x})=20$
Incorrect standard deviation $(\sigma)=3$
$ \Rightarrow 20 = \frac{1}{{100}}\sum\limits_{i = 1}^{300} {{x_i}} $
$ \Rightarrow \sum\limits_{i = 1}^{100} {{x_i}} = 20 \times 100 = 2000$
Incorrect sum of observations $=2000$
$\Rightarrow$ Correct sum of observations $=2000-21-21-18=2000-60=1940$
Find the mean and variance for the data
${x_i}$ | $6$ | $10$ | $14$ | $18$ | $24$ | $28$ | $30$ |
${f_i}$ | $2$ | $4$ | $7$ | $12$ | $8$ | $4$ | $3$ |
If both the means and the standard deviation of $50$ observations $x_1, x_2, ………, x_{50}$ are equal to $16$ , then the mean of $(x_1 - 4)^2, (x_2 - 4)^2, …., (x_{50} - 4)^2$ is
The mean and standard deviation of $15$ observations were found to be $12$ and $3$ respectively. On rechecking it was found that an observation was read as $10$ in place of $12$ . If $\mu$ and $\sigma^2$ denote the mean and variance of the correct observations respectively, then $15\left(\mu+\mu^2+\sigma^2\right)$ is equal to$...................$
Consider a set of $3 n$ numbers having variance $4.$ In this set, the mean of first $2 n$ numbers is $6$ and the mean of the remaining $n$ numbers is $3.$ A new set is constructed by adding $1$ into each of first $2 n$ numbers, and subtracting $1$ from each of the remaining $n$ numbers. If the variance of the new set is $k$, then $9 k$ is equal to .... .
The mean and standard deviation of six observations are $8$ and $4,$ respectively. If each observation is multiplied by $3,$ find the new mean and new standard deviation of the resulting observations.