किसी परीक्षा के एक प्रश्नपत्र में $12$ प्रश्न हैं जो क्रमश: $5$ तथा $7$ प्रश्नों वाले दो खंडों में विभक्त हैं अर्थात् खंड $I$ और खंड $II$. एक विद्यार्थी को प्रत्येक खंड से न्यूनतम $3$ प्रश्नों का चयन करते हुए कुल $8$ प्रश्नों को हल करना है। एक विद्यार्थी कितने प्रकार से प्रश्नों का चयन कर सकता है ?

Vedclass pdf generator app on play store
Vedclass iOS app on app store

It is given that the question paper consists of $12$ questions divided into two parts - Part $I$ and Part $II$, containing $5$ and $7$ questions, respectively.

A student has to attempt $8$ questions, selecting at least $3$ from each part. This can be done as follows.

$(a)$ $3$ questions from part $I$ and $5$ questions from part $II$

$(b)$ $4$ questions from part $I$ and $4$ questions from part $II$

$(c)$ $5$ questions from part $I$ and $3$ questions from part $II$

$3$ questions from part $I$ and $5$ questions from part $II$ can be selected in $^{5} C _{3} \times^{7} C _{5}$ ways.

$4$ questions from part $I$ and $4$ questions from part $II$ can be selected in $^{5} C _{4} \times^{7} C _{4}$. Ways.

$5$ questions from part $I$ and $3 $ questions from part $II$ can be selected in $^{5} C_{5} \times^{7} C_{3}$ ways.

Thus, required number of ways of selecting questions

$=^{5} C_{3} \times^{7} C_{5}+^{5} C_{4} \times^{7} C_{4}+^{5} C_{5} \times^{7} C_{3}$

$=\frac{5 !}{2 ! 3 !} \times \frac{7 !}{2 ! 5 !}+\frac{5 !}{4 ! 1 !} \times \frac{7 !}{4 ! 3 !}+\frac{5 !}{5 ! 0 !} \times \frac{7 !}{3 ! 4 !}$

$=210+175+35=420$

Similar Questions

$2$ पुरुषों और $3$ महिलाओं के एक समूह से $3$ व्यक्तियों की एक समिति बनानी है। यह कितने प्रकार से किया जा सकता है ? इनमें से कितनी समितियाँ ऐसी हैं, जिनमें $1$ पुरुष तथा $2$ महिलाएँ हैं ?

$52$ पत्तों की दो गड्डियाँ फेंटी जाती हैं। एक व्यक्ति को $26$ पत्ते बांटने के कुल प्रकार कितने होंगे, यदि उसके पास एक ही सूट (suit) तथा एक ही मान  (denomination) के दो पत्ते न आवें

$EQUATION$ शब्द के अक्षरों से कितने, अर्थपूर्ण या अर्थहीन, शब्दों की रचना की जा सकती है, जबकि स्वर तथा व्यंजक एक साथ रहते हैं ?

यदि $^8{C_r}{ = ^8}{C_{r + 2}}$ हो, तब $^r{C_2}$ का मान होगा

किसी समूह में $4$ लड़कियाँ और $7$ लड़के हैं। इनमें से $5$ सदस्यों की एक टीम का चयन कितने प्रकार से किया जा सकता है, यदि टीम में एक भी लड़की नहीं है ?

कम से कम $3$ लडकियाँ हैं ?