$2$ पुरुषों और $3$ महिलाओं के एक समूह से $3$ व्यक्तियों की एक समिति बनानी है। यह कितने प्रकार से किया जा सकता है ? इनमें से कितनी समितियाँ ऐसी हैं, जिनमें $1$ पुरुष तथा $2$ महिलाएँ हैं ?
Here, order does not matter. Therefore, we need to count combinations. There will be as many committees as there are combinations of $5$ different persons taken $3$ at a time. Hence, the required number of ways $=\,^{5} C _{3}=\frac{5 !}{3 ! 2 !}=\frac{4 \times 5}{2}=10.$
Now, $1$ man can be selected from $2$ men in $^{2} C _{1}$ ways and $2$ women can be selected from $3$ women in $^{3} C _{2}$ ways. Therefore, the required number of committees
$=\,^{2} C_{1} \times^{3} C_{2}=\frac{2 !}{1 ! 1 !} \times \frac{3 !}{2 ! 1 !}=6$
विद्यार्थियों के एक समूह में $5$ लड़के तथा $n$ लड़कियां हैं। यदि इस समूह में से तीन विद्यार्थियों की टीम यादृच्छिक इस प्रकार चुनने के तरीके, कि प्रत्येक टीम में कम से कम एक लड़का तथा कम से कम एक लड़की हो, $1750$ हैं, तो $n$ बराबर है
किसी कमरे में उपस्थित प्रत्येक व्यक्ति एक दूसरे से हाथ मिलाता है। यदि कुल हाथ मिलाये जाने की संख्या $66$ हो, तो कमरे में उपस्थित कुल व्यक्तियों की संख्या है
कथन$-1:$ $10$ एक जैसी गैंदों का $4$ विभिन्न बक्सों में बांटने के तरीकों की संख्या ताकि कोई बर्स्सा खाली न हो, ${ }^{9} C_{3}$ है।
कथन$-2:$ $9$ विभिन्न स्थानों में से $3$ स्थान चुने जाने के तरीकों की संख्या ${ }^{9} C_{3}$ है।
किसी समूह में $4$ लड़कियाँ और $7$ लड़के हैं। इनमें से $5$ सदस्यों की एक टीम का चयन कितने प्रकार से किया जा सकता है, यदि टीम में एक भी लड़की नहीं है ?
$9$ स्त्रियों व $8$ पुरूषों से $12$ सदस्यों की एक समिति बनानी है जिसमें कम से कम $5$ स्त्रियों का होना आवश्यक है तो उन समितियों की संख्यायें जिनमें स्त्रियाँ बहुमत में हैं एवं पुरुष बहुमत में हैं, क्रमश: हैं