In an examination, a question paper consists of $12$ questions divided into two parts i.e., Part $\mathrm{I}$ and Part $\mathrm{II}$, containing $5$ and $7$ questions, respectively. A student is required to attempt $8$ questions in all, selecting at least $3$ from each part. In how many ways can a student select the questions?
It is given that the question paper consists of $12$ questions divided into two parts - Part $I$ and Part $II$, containing $5$ and $7$ questions, respectively.
A student has to attempt $8$ questions, selecting at least $3$ from each part. This can be done as follows.
$(a)$ $3$ questions from part $I$ and $5$ questions from part $II$
$(b)$ $4$ questions from part $I$ and $4$ questions from part $II$
$(c)$ $5$ questions from part $I$ and $3$ questions from part $II$
$3$ questions from part $I$ and $5$ questions from part $II$ can be selected in $^{5} C _{3} \times^{7} C _{5}$ ways.
$4$ questions from part $I$ and $4$ questions from part $II$ can be selected in $^{5} C _{4} \times^{7} C _{4}$. Ways.
$5$ questions from part $I$ and $3 $ questions from part $II$ can be selected in $^{5} C_{5} \times^{7} C_{3}$ ways.
Thus, required number of ways of selecting questions
$=^{5} C_{3} \times^{7} C_{5}+^{5} C_{4} \times^{7} C_{4}+^{5} C_{5} \times^{7} C_{3}$
$=\frac{5 !}{2 ! 3 !} \times \frac{7 !}{2 ! 5 !}+\frac{5 !}{4 ! 1 !} \times \frac{7 !}{4 ! 3 !}+\frac{5 !}{5 ! 0 !} \times \frac{7 !}{3 ! 4 !}$
$=210+175+35=420$
The number of ways in which a committee of $6$ members can be formed from $8 $ gentlemen and $4$ ladies so that the committee contains at least $3$ ladies is
If $^n{P_3}{ + ^n}{C_{n - 2}} = 14n$, then $n = $
The number of ways of dividing $52$ cards amongst four players equally, are
The number of seven digit positive integers formed using the digits $1,2,3$ and $4$ only and sum of the digits equal to $12$ is $...........$.
Let $A_1,A_2,........A_{11}$ are players in a team with their T-shirts numbered $1,2,.....11$. Hundred gold coins were won by the team in the final match of the series. These coins is to be distributed among the players such that each player gets atleast one coin more than the number on his T-shirt but captain and vice captain get atleast $5$ and $3$ coins respectively more than the number on their respective T-shirts, then in how many different ways these coins can be distributed ?