एक त्रिभुज $ABC$ में, $A$ के निर्देशांक $(1,2)$ हैं तथा $B$ तथा $C$ से होकर जाने वाली माध्चिकाओं के समीकरण क्रमशः $x + y =5$ तथा $x =4$ हैं, तो $\Delta ABC$ का क्षेत्रफल (वर्ग इकाइयों में) है
$5$
$9$
$12$
$4$
एक बिन्दु इस प्रकार गति करता है कि इसकी बिन्दु $(4,\,0)$ से दूरी सरल रेखा $x = 16$ से दूरी की आधी रहती है, तो बिन्दु का बिन्दुपथ है
कार्तीय तल में एक चतुर्भुज खींचिए जिसके शीर्ष $(-4,5),(0,7),(5,-5)$ और $(-4,-2)$ हैं। इसका क्षेत्रफल भी ज्ञात कीजिए।
बिन्दु $(1, 3)$ और $(5, 1)$ एक आयत के विपरीत शीर्ष हैं। शेष दो शीर्ष, रेखा $y = 2x + c$ पर स्थित हैं, तब $c$ का मान होगा
रेखा $2x + 3y = 12$, $x$-अक्ष को बिन्दु $A$ तथा $y$-अक्ष को बिन्दु $B$ पर मिलती है। बिन्दु $(5, 5)$ से जाने वाली रेखा $AB$ पर लम्ब है एवं यह रेखा $x$-अक्ष, $y$-अक्ष तथा दी गई रेखा को क्रमश: $C, \,D$ व $E$ पर मिलती है। यदि $O$ मूल बिन्दु हो, तो $OCEB$ का क्षेत्रफल है
उन रेखाओं के समीकरण, जिन पर मूलबिन्दु से डाला गया लम्ब $x$-अक्ष से ${30^o}$ का कोण बनाता है एवं जो अक्षों के साथ $\frac{{50}}{{\sqrt 3 }}$ वर्ग इकाई क्षेत्रफल का त्रिभुज बनाता है,