Consider the system of linear equations

$x+y+z=5, x+2 y+\lambda^2 z=9$

$x+3 y+\lambda z=\mu$, where $\lambda, \mu \in R$. Then, which of the following statement is NOT correct?

  • [JEE MAIN 2024]
  • A

     System has infinite number of solution if $\lambda=1$ and $\mu=13$

  • B

     System is inconsistent if $\lambda=1$ and $\mu \neq 13$

  • C

    System is consistent if $\lambda \neq 1$ and $\mu=13$

  • D

    System has unique solution if $\lambda \neq 1$ and $\mu \neq 13$

Similar Questions

The values of the determinant $\left| {\,\begin{array}{*{20}{c}}1&{\cos (\alpha - \beta )}&{\cos \alpha }\\{\cos (\alpha - \beta )}&1&{\cos \beta }\\{\cos \alpha }&{\cos \beta }&1\end{array}\,} \right|$ is

The greatest value of $c \in R$ for which the system of linear equations

$x - cy - cz = 0 \,\,;\,\, cx - y + cz = 0 \,\,;\,\, cx + cy - z = 0 $ has a non -trivial solution, is

  • [JEE MAIN 2019]

If $B$ is a $3 \times 3$ matrix such that $B^2 = 0$, then det. $[( I+ B)^{50} -50B]$ is equal to

  • [JEE MAIN 2014]

$\Delta = \left| {\,\begin{array}{*{20}{c}}{a + x}&b&c\\b&{x + c}&a\\c&a&{x + b}\end{array}\,} \right|$,which of the following is a factor for the above determinant

$\left| {\,\begin{array}{*{20}{c}}{{a_1}}&{m{a_1}}&{{b_1}}\\{{a_2}}&{m{a_2}}&{{b_2}}\\{{a_3}}&{m{a_3}}&{{b_3}}\end{array}\,} \right| = $