The number of values of $\alpha$ for which the system of equations:   $x+y+z=\alpha$ ;  $\alpha x+2 \alpha y+3 z=-1$ ;  $x+3 \alpha y+5 z=4$    is inconsistent, is

  • [JEE MAIN 2022]
  • A

    $0$

  • B

    $1$

  • C

    $2$

  • D

    $3$

Similar Questions

$2x + 3y + 4z = 9$,$4x + 9y + 3z = 10,$$5x + 10y + 5z = 11$ then the value of $ x$ is

$\left| {\,\begin{array}{*{20}{c}}1&1&1\\1&{{\omega ^2}}&\omega \\1&\omega &{{\omega ^2}}\end{array}\,} \right| = $

The value of $\lambda$ and $\mu$ such that the system of equations $x+y+z=6,3 x+5 y+5 z=26, x+2 y+\lambda z=\mu$ has no solution, are :

  • [JEE MAIN 2021]

Let $\omega $ be a complex number such that  $2\omega + 1 = z$ where $z = \sqrt { - 3} $ . If $\left| {\begin{array}{*{20}{c}}1&1&1\\1&{ - {\omega ^2} - 1}&{{\omega ^2}}\\1&{{\omega ^2}}&{{\omega ^7}}\end{array}} \right| = 3k$ then $k$ is equal to :

  • [JEE MAIN 2017]

Let $\lambda, \mu \in R$. If the system of equations

$ 3 x+5 y+\lambda z=3 $

$ 7 x+11 y-9 z=2 $

$ 97 x+155 y-189 z=\mu$

has infinitely many solutions, then $\mu+2 \lambda$ is equal to :

  • [JEE MAIN 2024]