Evaluate $\left|\begin{array}{cc}x & x+1 \\ x-1 & x\end{array}\right|$
$0$
$1$
$2$
$3$
Let $\lambda $ be a real number for which the system of linear equations $x + y + z = 6$
; $4x + \lambda y - \lambda z = \lambda - 2$ ; $3x + 2y -4z = -5$ Has indefinitely many solutions. Then $\lambda $ is a root of the quadratic equation
$l,m,n$ are the ${p^{th}},{q^{th}}$and ${r^{th}}$term of a G.P., all positive, then $\left| {\,\begin{array}{*{20}{c}}{\log l}&{p\,\,\,\,\,\begin{array}{*{20}{c}}1\end{array}}\\{\log m}&{q\,\,\,\,\,\begin{array}{*{20}{c}}1\end{array}}\\{\log n}&{r\,\,\,\,\,\begin{array}{*{20}{c}}1\end{array}}\end{array}\,} \right|$ equals
For $\alpha, \beta \in R$, suppose the system of linear equations $x-y+z=5$ ; $ 2 x+2 y+\alpha z=8 $ ; $3 x-y+4 z=\beta$ has infinitely many solutions. Then $\alpha$ and $\beta$ are the roots of
Let the system of linear equations $x+y+k z=2$ ; $2 x+3 y-z=1$ ; $3 x+4 y+2 z=k$ , have infinitely many solutions. Then the system $( k +1) x +(2 k -1) y =7$ ; $(2 k +1) x +( k +5) y =10 \text { has : }$
$S$ denote the set of all real values of $\lambda$ such that the system of equations $\lambda x + y + z =1$ ; $x +\lambda y + z =1$ ; $x + y +\lambda z =1$ is inconsistent, then $\sum_{\lambda \in S}\left(|\lambda|^2+|\lambda|\right)$ is equal to