किसी स्कूल के $400$ विद्यार्थियों के सर्वेक्षण में $100$ विद्यार्थी सेब का रस, $150$ विद्यार्थी संतरे का रस और $75$ विद्यार्थी सेब तथा संतरे दोनों का रस पीने वाले पाए जाते हैं। ज्ञात कीजिए कि कितने विद्यार्थी न तो सेब का रस पीते हैं और न संतरे का ही ?
Let $U$ denote the set of surveyed students and $A$ denote the set of students taking apple juice and $B$ denote the set of students taking orange juice. Then
$n(U) = 400,n(A) = 100,n(B) = 150$ and $n(A \cap B) = 75$
Now $n\left( {{A^\prime } \cap {B^\prime }} \right) = n{(A \cup B)^\prime }$
${ = n(U) - n(A \cup B)}$
${ = n(U) - n(A) - n(B) + n(A \cap B)}$
${ = 400 - 100 - 150 + 75 = 225\,}$
Hence $225$ students were taking neither apple juice nor orange juice.
एक विद्यालय के $20$ अध्यापक या तो गणित या भौतिकी पढ़ाते हैं, $ 12 $ गणित जबकि $4 $ दोनों विषय पढ़ाते हैं, तब केवल भौतिकी पढ़ाने वाले अध्यापकों की संख्या होगी
एक सर्वेक्षण में पाया गया कि $21$ लोग उत्पाद $A , 26$ लोग उत्पाद $B , 29$ लोग उत्पाद $C$ पसंद करते हैं। यदि $14$ लोग उत्पाद $A$ तथा $B , 12$ लोग उत्पाद् $C$ तथा $A , 14$ लोग उत्पाद $B$ तथा $C$ और $8$ लोग तीनो ही उत्पादों को पसंद करते हैं। ज्ञात कीजिए कि कितने लोग केवल उत्पाद $C$ को पसंद् करते हैं।
एक विद्यालय की तीन एथलेटिक्स टीम के सदस्यों में से $ 21$ क्रिकेट टीम में, $26 $ हॉकी टीम में तथा $ 29$ फुटबाल टीम में हैं साथ ही इनमें से $14 $ हॉकी और क्रिकेट, $15$ हॉकी और फुटबाल तथा $12$ फुटबाल और क्रिकेट दोनों खेलते हैं। $8$ तीनों खेल खेलते हैं, तब तीनों एथलेटिक्स टीम के सदस्यों की कुल संख्या क्या होगी
एक कमेटी में, $50$ व्यक्ति फ़्रेंच, $20$ व्यक्ति स्पेनिश और $10$ व्यक्ति स्पेनिश और फ्रेंच दोनों ही भाषाओं को बोल सकते हैं। कितने व्यक्ति इन दोनों ही भाषाओं में से कम से कम एक भाषा बोल सकते हैं ?
एक स्कूल की तीन एथलेटिक टीमों में $21$ छात्र क्रिकेट टीम में हैं, $26$ हॉकी टीम में हैं और $29$ फुटबॉल टीम में हैं। उनमें से $14$ हॉकी और क्रिकेट खेलते हैं, $15$ हॉकी और फुटबॉल खेलते हैं, और $12$ फुटबॉल और क्रिकेट खेलते हैं। आठ छात्र तीनों खेल खेलते हैं। तो इन तीनों एथलेटिक टीमों में कुल कितने अलग-अलग सदस्य हैं?