एक कमेटी में, $50$ व्यक्ति फ़्रेंच, $20$ व्यक्ति स्पेनिश और $10$ व्यक्ति स्पेनिश और फ्रेंच दोनों ही भाषाओं को बोल सकते हैं। कितने व्यक्ति इन दोनों ही भाषाओं में से कम से कम एक भाषा बोल सकते हैं ?

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let $F$ be the set of people in the committee who speak French, and $S$ be the set of people in the committee who speak Spanish

$\therefore n(F)=50, n(S)=20, n(S \cap F)=10$

We know that:

$n(S \cup F)=n(S)+n(F)-n(S \cap F)$

$=20+50-10$

$=70-10=60$

Thus, $60$ people in the committee speak at least one of the two languages.

Similar Questions

एक कक्षा में $100$ छात्र हैं, $15$ छात्रों ने केवल भौतिकी (लेकिन गणित और रसायन विज्ञान नहीं) को चुना, $3$ छात्रों ने केवल रसायन विज्ञान (लेकिन गणित और भौतिकी नहीं) को चुना, और $45$ छात्रों ने केवल गणित (लेकिन भौतिकी और रसायन विज्ञान नहीं) को चुना। शेष छात्रों में, पाया गया है कि $23$ छात्रों ने भौतिकी और रसायन विज्ञान को चुना है, $20$ छात्रों ने भौतिकी और गणित को चुना है, और $12$ छात्रों ने गणित और रसायन विज्ञान को चुना है। उन छात्रों की संख्या जिन्होंने तीनों विषयों को चुना है, हैं।

  • [KVPY 2021]

एक संस्था ने प्रतियोगिता ' $A$ ' में $48$ पदक, प्रतियोगिता ' $B$ ' में $25$ पदक तथा प्रतियोगिता ' $C$ ' में $18$ पदक दिए। यदि यह पदक कुल $60$ पुरूषों को मिले तथा केवल पाँच पुरूषों को तीनों प्रतियोगिताओं में पदक मिले, तो कितने पुरूषों को ठीक दो प्रतियोगिताओं में पदक मिले?

  • [JEE MAIN 2023]

एक सर्वेक्षण से पता चलता है कि शहर के $63 \%$ व्यक्ति अखबार $A$ पढ़ते है जबकि $76 \%$ व्यक्ति अखबार $B$ पढ़ते है। यदि $x \%$ व्यक्ति दोनों अखबार पढ़ते है, तो $x$ का संभव मान हो सकता है

  • [JEE MAIN 2020]

किसी विद्यालय के $600$ विद्यार्थियों के सर्वेक्षण से ज्ञात हुआ कि $150$ विद्यार्थी चाय, $225$ विद्यार्थी कॉफी तथा $100$ विद्यार्थी चाय और कॉफी दोनों पीते हैं। ज्ञात कीजिए कि कितने विद्यार्थी न तो चाय पीते हैं और न कॉफी पीते हैं।

एक कक्षा में $55$ छात्र हैं, जिनमें विभिन्न विषयों का अध्ययन करने वाले छात्रों की संख्या गणित में $23$, भौतिकी में $24$, रसायन शास्त्र में $19$, गणित और भौतिकी दोनों में $12$, गणित और रसायन शास्त्र में $9$, भौतिकी और रसायन शास्त्र में $7$ और तीनों विषयों में $4$ हैं। वे छात्र जिन्होंने ठीक एक विषय लिया है, उनकी  कुल संख्या कितनी है?