એક શાળાના $400$ વિદ્યાર્થીઓની મોજણી કરી. $100$ વિદ્યાર્થી સફરજનનો રસ પીએ છે, $150$ નારંગીનો રસ પીએ છે અને $75$ વિદ્યાર્થીઓ સફરજન તેમજ નારંગી બંનેનો રસ પીએ છે. કેટલા વિદ્યાર્થીઓ સફરજન અને નારંગી પૈકી એકપણનો રસ પીતા નથી?
Let $U$ denote the set of surveyed students and $A$ denote the set of students taking apple juice and $B$ denote the set of students taking orange juice. Then
$n(U) = 400,n(A) = 100,n(B) = 150$ and $n(A \cap B) = 75$
Now $n\left( {{A^\prime } \cap {B^\prime }} \right) = n{(A \cup B)^\prime }$
${ = n(U) - n(A \cup B)}$
${ = n(U) - n(A) - n(B) + n(A \cap B)}$
${ = 400 - 100 - 150 + 75 = 225\,}$
Hence $225$ students were taking neither apple juice nor orange juice.
એક શહેરમાં બે અખબારો $A$ અને $B$ પ્રકાશિત થયા. તે શહેરની $25\%$ વસ્તી $A$ અને $20\%$ વસ્તી $B$ વાંચે છે. જયારે $8\%$ વસ્તી $A$ અને $B$ બંને વચ્ચે છે તથા $30\%$ લોકો જેમણે $A$ વાંચ્યું પરંતુ $B$ ની જાહેરાતો પર ધ્યાન આપતા નથી અને $40\%$ લોકો જેમણે $B$ વાંચ્યું પરંતુ $A$ ની જાહેરાતો પર ધ્યાન આપતા નથી જયારે $50\%$ લોકો $A$ અને $B$ બંનેની જાહેરાતો તરફ ધ્યાન આપે છે. તો જાહેરાતો માં ધ્યાન આપતી વસ્તી ની ટકાવારી મેળવો.
એક ઉસ્ચતર માધ્યમિક શાળાના $220$ વિદ્યાર્થાઓના સર્વેક્ષણમાં, એવું જોવામાં આવ્યુ છે કે ઓછામાં ઓછા $125$ તથા વધુમા વધુ $130$ વિદ્યાથીઓ ગણિત શાસ્ત્ર ભણે છે; ઓછામાં ઓછા $85$ અને વધુમા વધુ $95$ ભૌતિકશાસ્ત્ર ભણે છે; ઓછામાં ઓછા $75$ અને વધુમા વધુ $90$ ૨સાયણશાસ્ત્ર ભણે છે; $30$ બન્ને ભૌતિકશાસ્ત્ર અને રસાયણશાસ્ત્ર ભણે છે; $50$ બન્ને રસાયણશાસ્ત્ર અને ગણિતશાસ્ર ભણે છે; $40$ બન્ને ગણિતશાસ્ર અને ભૌતિકશાસ્ત્ર ભણે છે તથા $10$ આ પૈકીના કોઈ પણ વિષયો ભણતા નથી. ધારોકે $\mathrm{m}$ અને $\mathrm{n}$ અનુક્રમે આ ત્રણે વિષયો ભણતા વિદ્યાર્થાઓની ઓછામાં ઓછી તથા વધુમાં વધુ સંખ્યા છે. તો $\mathrm{m}+\mathrm{n}=$ ...........
એક સ્કુલમાં $800$ વિર્ધાથી છે,જેમાંથી $224$ ક્રિકેટ ,$240$ હોકી ,$336$ બાસ્કેટબોલ રમે છે.જો કુલ વિર્ધાથીમાંથી , $64$ બાસ્કેટબોલ અને હોકી ,$80$ ક્રિકેટ અને બાસ્કેટબોલ તથા $40$ ક્રિકેટ અને હોકી રમે છે. જો $24$ વિર્ધાથી ત્રણેય રમત રમતાં હોય તો . . . . વિર્ધાથી એકપણ રમત રમતાં નથી.
એક બજાર-સંશોધન જૂથે $1000$ ઉપભોક્તાઓની મોજણી કરી અને શોધ્યું કે $720$ ગ્રાહકો ઉત્પાદન $\mathrm{A}$ પસંદ કરે છે અને $450$ ઉત્પાદન $\mathrm{B}$ પસંદ કરે છે. બંને ઉત્પાદન પસંદ કરનાર ઉપભોક્તાની ન્યૂનતમ સંખ્યા કેટલી હશે ?
ચામડીની વ્યાધિવાળી $200$ વ્યક્તિઓ છે. $120$ વ્યક્તિઓને રસાયણ $C _{1}$ અને $50$ વ્યક્તિઓને રસાયણ $C _{2}$ ની અસર માલૂમ પડી અને $30$ ને બંને રસાયણો $C _{1}$ અને $C _{2}$ ની અસર માલૂમ પડી. રસાયણ $C _{1}$ ની અસર હોય, પરંતુ રસાયણ $C _{2}$ ની અસર ન હોય તેવી વ્યક્તિઓની સંખ્યા શોધો.