In a survey of $400$ students in a school, $100$ were listed as taking apple juice, $150$ as taking orange juice and $75$ were listed as taking both apple as well as orange juice. Find how many students were taking neither apple juice nor orange juice.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let $U$ denote the set of surveyed students and $A$ denote the set of students taking apple juice and $B$ denote the set of students taking orange juice. Then

$n(U) = 400,n(A) = 100,n(B) = 150$ and $n(A \cap B) = 75$

Now  $n\left( {{A^\prime } \cap {B^\prime }} \right) = n{(A \cup B)^\prime }$

${ = n(U) - n(A \cup B)}$

${ = n(U) - n(A) - n(B) + n(A \cap B)}$

${ = 400 - 100 - 150 + 75 = 225\,}$

Hence $225$ students were taking neither apple juice nor orange juice.

Similar Questions

Two newspaper $A$ and $B$ are published in a city. It is known that $25\%$ of the city populations reads $A$ and $20\%$ reads $B$ while $8\%$ reads both $A$ and $B$. Further, $30\%$ of those who read $A$ but not $B$ look into advertisements and $40\%$ of those who read $B$ but not $A$ also look into advertisements, while $50\%$ of those who read both $A$and $B$ look into advertisements. Then the percentage of the population who look into advertisement is

  • [JEE MAIN 2019]

In a survey of $60$ people, it was found that $25$ people read newspaper $H , 26$ read newspaper $T, 26$ read newspaper $I, 9$ read both $H$ and $I, 11$ read both $H$ and $T,$ $8$ read both $T$ and $1,3$ read all three newspapers. Find:

the number of people who read exactly one newspaper.

A survey shows that $63 \%$ of the people in a city read newspaper $A$ whereas $76 \%$ read newspaper $B$. If $x \%$ of the people read both the newspapers, then a possible value of $x$ can be

  • [JEE MAIN 2020]

There are $200$ individuals with a skin disorder, $120$ had been exposed to the chemical $C _{1}, 50$ to chemical $C _{2},$ and $30$ to both the chemicals $C _{1}$ and $C _{2} .$ Find the number of individuals exposed to

Chemical $C_{1}$ or chemical $C_{2}$

In a city $20$ percent of the population travels by car, $50$ percent travels by bus and $10$ percent travels by both car and bus. Then persons travelling by car or bus is......$\%$