એક વર્ગના $10$ વિધ્યાર્થીઓના સરેરાશ ગુણ $60$ અને પ્રમાણિત વિચલન $4$ છે જ્યારે બીજા દસ વિધ્યાર્થીઓના સરેરાશ ગુણ $40$ અને પ્રમાણિત વિચલન $6$ છે જો બધા $20$ વિધ્યાર્થીઓને સાથે લેવામાં આવે તો પ્રમાણિત વિચલન મેળવો.
$5$
$7.5$
$9.8$
$11.2$
વિધાન $1$ : પ્રથમ $n$ અયુગ્મ પ્રકૃતિક સંખ્યાઓનો વિચરણ $\frac{{{n^2} - 1}}{3}$ થાય
વિધાન $2$ : પ્રથમ $n$ અયુગ્મ પ્રકૃતિક સંખ્યાઓનો સરવાળો $n^2$ અને પ્રથમ $n$ અયુગ્મ પ્રકૃતિક સંખ્યાઓનો વર્ગોનો સરવાળો $\frac{{n\left( {4{n^2} + 1} \right)}}{3}$ થાય
એક ડિઝાઇનમાં બનાવેલ વર્તુળોના વ્યાસ (મિમીમાં) નીચે આપ્યા છે :
વ્યાસ | $33-36$ | $37-40$ | $41-44$ | $45-48$ | $49-52$ |
વર્તુળોની સંખ્યા | $15$ | $17$ | $21$ | $22$ | $25$ |
વર્તુળોના વ્યાસનું પ્રમાણિત વિચલન અને મધ્યક વ્યાસ શોધો.
જો $v_1 =$ $\{13, 1 6, 1 9, . . . . . , 103\}$ નો વિચરણ અને $v_2 =$ $\{20, 26, 32, . . . . . , 200\}$ નો વિચરણ હોય તો $v_1 : v_2$ મેળવો.
એક $60$ બલ્બના નમૂનાનો ચાલવાનો મધ્યક $650$ કલાકો અને પ્રમાણિત વિચલન $8$ કલાકો છે બીજા $80$ બલ્બના નમૂનાનો ચાલવાનો મધ્યક $660$ કલાકો અને પ્રમાણિત વિચલન $7$ કલાકો છે તો બધાનું પ્રમાણિત વિચલન કેટલું થાય ?
જો બે $200$ અને $300$ અવલોકનો ધરાવતા સમૂહોનો મધ્યક અનુક્રમે $25, 10$ અને તેમનો $S.D.$ અનુક્રમે $3$ અને $4$ હોય તો બંને સમૂહોને ભેગા કરતાં $500$ અવલોકનો ધરાવતા નવા સમૂહનો વિચરણ મેળવો.