કાટકોણ ત્રિકોણ $A B C$ માં ખૂણો $B$ કાટખૂણો છે. જો $\tan A =1,$ તો ચકાસો કે $2 \sin A \cos A=1$
$\triangle ABC$માં,
$\tan A =\frac{ BC }{ AB }=1$ (જુઓ આકૃતિ)
એટલે કે $BC = AB$
ધારો કે કોઈ ધન સંખ્યા $k$ માટે $AB = BC =k,$
હવે,$AC=\sqrt{ AB ^{2}+ BC ^{2}}$
$=\sqrt{(k)^{2}+(k)^{2}}=k \sqrt{2}$
માટે, $\sin A=\frac{ BC }{ AC }=\frac{1}{\sqrt{2}} \quad$ અને $\cos A =\frac{ AB }{ AC }=\frac{1}{\sqrt{2}}$
તેથી, $\quad 2 \sin A \cos A =2\left(\frac{1}{\sqrt{2}}\right)\left(\frac{1}{\sqrt{2}}\right)=1,$ સિદ્ધ થાય છે.
$\angle A$ અને $\angle B$ એવા લઘુકોણો છે કે, જેથી $\cos A =\cos B .$ સાબિત કરો કે $\angle A =\angle B$.
નીચેના વિધાનો સત્ય છે કે અસત્ય તે જણાવો. તમારા જવાબની યથાર્થતા ચકાસો :
$\sin (A+B)=\sin A+\sin B$
સાબિત કરો કે, $\frac{\cot A-\cos A}{\cot A+\cos A}=\frac{\operatorname{cosec} A-1}{\operatorname{cosec} A+1}$
જો $\tan A =\cot B$ હોય, તો સાબિત કરો કે, $A + B =90^{\circ}$
ત્રિકોણમિતીય ગુણોત્તરો $\sin A , \sec A$ અને $\tan A$ ને $\cot A$ નાં પદોમાં દર્શાવો.