In a right triangle $A B C$, right-angled at $B$. if $\tan A =1,$ then verify that $2 \sin A \cos A=1$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

In $\triangle ABC , \tan A =\frac{ BC }{ AB }=1$ (see $Fig.$)

i.e. $BC = AB$

Let $AB = BC =k,$ where $k$ is a positive number.

Now,$AC=\sqrt{ AB ^{2}+ BC ^{2}}$

$=\sqrt{(k)^{2}+(k)^{2}}=k \sqrt{2}$

Therfore, $\sin A=\frac{ BC }{ AC }=\frac{1}{\sqrt{2}} \quad$ and $\cos A =\frac{ AB }{ AC }=\frac{1}{\sqrt{2}}$

So, $\quad 2 \sin A \cos A =2\left(\frac{1}{\sqrt{2}}\right)\left(\frac{1}{\sqrt{2}}\right)=1,$ which is the required value.

1043-s4

Similar Questions

$\sin 2 A=2 \sin A$ is true when $A=$

Prove the following identities, where the angles involved are acute angles for which the expressions are defined.

$\frac{\tan \theta}{1-\cot \theta}+\frac{\cot \theta}{1-\tan \theta}=1+\sec \theta \operatorname{cosec} \theta$

If $\angle A$ and $\angle B$ are acute angles such that $\cos A =\cos B ,$ then show that $\angle A =\angle B$.

Prove the following identities, where the angles involved are acute angles for which the expressions are defined.

$(\sin A+\operatorname{cosec} A)^{2}+(\cos A+\sec A)^{2}=7+\tan ^{2} A+\cot ^{2} A$

$\frac{2 \tan 30^{\circ}}{1-\tan ^{2} 30^{\circ}}=$