નીચેના નિયમોમાં જેમના માટે પદાવલિ વ્યાખ્યાયિત કરી છે તે ખૂણા લઘુકોણ છે. આ નિત્યસમો સાબિતકરો :

$(\sin A+\operatorname{cosec} A)^{2}+(\cos A+\sec A)^{2}=7+\tan ^{2} A+\cot ^{2} A$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$(\sin A+\operatorname{cosec} A)^{2}+(\cos A+\sec A)^{2}=7+\tan ^{2} A+\cot ^{2} A$

$L.H.S.=(\sin A+\operatorname{cosec} A)^{2}+(\cos A+\sec A)^{2}$

$\quad=\sin ^{2} A+\operatorname{cosec}^{2} A+2 \sin A \operatorname{cosec} A+\cos ^{2} A+\sec ^{2} A+2 \cos A \sec A$

$\quad=\left(\sin ^{2} A+\cos ^{2} A\right)+\left(\operatorname{cosec}^{2} A+\sec ^{2} A\right)+2 \sin A\left(\frac{1}{\sin A}\right)+2 \cos A\left(\frac{1}{\cos A}\right)$

$\quad=(1)+\left(1+\cot ^{2} A+1+\tan ^{2} A\right)+(2)+(2)$

$\quad=7+\tan ^{2} A+\cot ^{2} A$

$=R \cdot H . S.$

Similar Questions

સાબિત કરો કે, $\frac{\cot A-\cos A}{\cot A+\cos A}=\frac{\operatorname{cosec} A-1}{\operatorname{cosec} A+1}$

કિંમત શોધો :

$\frac{5 \cos ^{2} 60^{\circ}+4 \sec ^{2} 30^{\circ}-\tan ^{2} 45^{\circ}}{\sin ^{2} 30^{\circ}+\cos ^{2} 30^{\circ}}$

$\frac{1-\tan ^{2} 45^{\circ}}{1+\tan ^{2} 45^{\circ}}=$

$\triangle PQR$માં $\angle Q$ કાટખૂણો છે અને $PR + QR = 25$ સેમી  અને $PQ = 5$ સેમી હોય, તો $\sin P, \cos P$ અને $\tan$ $P$ શોધો.

નીચેના નિયમોમાં જેમના માટે પદાવલિ વ્યાખ્યાયિત કરી છે તે ખૂણા લઘુકોણ છે. આ નિત્યસમો સાબિત કરો :

$\frac{1+\sec A}{\sec A}=\frac{\sin ^{2} A}{1-\cos A}$