એક છાત્રાલયમાં $60\%$ વિદ્યાર્થીઓ હિન્દી સમાચારપત્ર વાંચે છે, $40\%$ અંગ્રેજી સમાચારપત્ર વાંચે છે અને $20\%$ હિન્દી અને અંગ્રેજી બંને સમાચારપત્ર વાંચે છે. એક વિદ્યાર્થી યાદૈચ્છિક રીતે પસંદ કરવામાં આવ્યો.જો તે અંગ્રેજી સમાચારપત્ર વાંચતો હોય, તો તે હિન્દી સમાચારપત્ર વાંચે છે તેની સંભાવના શોધો. 

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$\mathrm{P}(\mathrm{H} \cup \mathrm{E})^{\prime}=1-\mathrm{P}(\mathrm{H} \cup \mathrm{E})$

$=1-\{\mathrm{P}(\mathrm{H})+\mathrm{P}(\mathrm{E})-\mathrm{P}(\mathrm{H} \cap \mathrm{E})\}$

$=1-\left(\frac{3}{5}+\frac{2}{5}-\frac{1}{5}\right)$

$=1-\frac{4}{5}$

$=\frac{1}{5}$

Probability that a random chosen student reads Hindi newspaper, if she reads English newspaper, is given by $\mathrm{P}(\mathrm{H} | \mathrm{E})$

$\mathrm{P}(\mathrm{H} | \mathrm{E})=\frac{\mathrm{P}(\mathrm{H} \cap E)}{\mathrm{P}(\mathrm{E})}$

$=\frac{\frac{1}{5}}{\frac{2}{5}}$

$=\frac{1}{2}$

Similar Questions

$A$ એ સત્ય બોલો તેની સંભાવના $\frac{4}{5}$ છે અને $B$ એ સત્ય બોલે તેની સંભાવના $\frac{3}{4}$ છે,તો એક સત્ય વિધાન વિશે બંને ને બોલવાનુ કહેતા બંનેમાં વિરોધાભાસ થાય તેની સંભાવના મેળવો.

  • [IIT 1975]

જો $\,P(A\, \cup \,\,B)\,\, = \,\,\frac{2}{3}\,,\,\,P(A\,\, \cap \,\,B)\,\, = \,\,\frac{1}{6}\,\,$ અને $\,\,P(A)\,\, = \,\,\frac{1}{3}$  હોય 

એક સમતોલ સિક્કા ને ઉછાળવામાં આવે છે .  જો છાપ આવે તો બે સમતોલ પાસાને ઉછાળવામાં આવે છે અને તેના પરના અંકોનો સરવાળો નોધવામાં આવે છે અને જો કાંટ આવે તો સરખી રીતે છીપેલા નવ પત્તા કે જેના પર $1, 2, 3,….., 9$ અંક લખેલા હોય તેમાથી એક પત્તું પસંદ કરી તે તેના પરનો અંક નોધવામાં આવે છે તો નોધાયેલા અંક  $7$ અથવા $8$ હોય તેની સંભાવના મેળવો.

  • [JEE MAIN 2019]

ત્રણ ઘટનાઓ $A , B$ અને $C$ ની સંભાવના અનુક્રમે $P ( A )=0.6, P ( B )=0.4$ અને $P ( C )=0.5$ આપેલ છે જો $P ( A \cup B )=0.8, P ( A \cap C )=0.3, P ( A \cap B \cap$ $C)=0.2, P(B \cap C)=\beta$ અને $P(A \cup B \cup C)=\alpha$ જ્યાં $0.85 \leq \alpha \leq 0.95,$ હોય તો $\beta$ ની કિમત ........ અંતરાલમાં રહે છે 

  • [JEE MAIN 2020]

ધરોકે $A, B,$ અને $C$ એ ઘટના ઓ છે કે જેથી $ P\,(A) = P\,(B) = P\,(C) = \frac{1}{4},\,P\,(AB) = P\,(CB) = 0,\,P\,(AC) = \frac{1}{8},$  તો   $P\,(A + B) = .....$