એક થેલામાં $4$ લાલ, $5$ સફેદ અને $6$ કાળા દડા છે. ત્રણ દડા યાર્દચ્છિક રીતે પસંદ કરવામાં આવે, તો તેઓ ભિન્ન રંગના હોવાથી સંભાવના કેટલી થાય ?
$23/91$
$24/91$
$25/91$
આપેલ પૈકી એક પણ નહિં.
જો ઘટનાઓ $X$ અને $Y$ છે કે જેથી $P(X \cup Y=P)\,(X \cap Y).$
વિધાન $1:$ $P(X \cap Y' = P)\,(X' \cap Y = 0).$
વિધાન $2:$ $P(X) + P(Y = 2)\,P\,(X \cap Y)$
જો $A, B, C$ અનુક્રમે $5$ માંથી $4$ વાર, $4$ માંથી $3$ વાર અને $3$ માંથી $2$ વાર નિશાન સાધી શકે છે તો, તે પૈકી ચોક્કસ બે નિશાન સાધી શકે તેવી સંભાવના કેટલી થાય ?
$X$ એ પરિક્ષામાં નાપાસ થાય તેની સંભાવના $0.3$ છે અને $Y$ ની સંભાવના $0.2$, તો $X$ અથવા $Y$ પરિક્ષામાં નાપાસ થાય તેની સંભાવના મેળવો.
જેની ઉપર પૂર્ણાકો $1, 2, 3$ લાલ રંગથી અને $4, 5, 6$ લીલા રંગથી લખેલ હોય તેવા પાસાને ફેંકવામાં આવે છે. પાસા પર મળતો પૂર્ણાક યુગ્મ છે તે ઘટનાને $A$ વડે તથા પાસા પરનો પૂર્ણક લાલ રંગથી લખેલ છે તે ઘટનાને $B$ વડે દર્શાવીએ, તો ઘટનાઓ $A$ અને $B$ નિરપેક્ષ છે ?
આપેલ ઘટનાઓ $A$ અને $B$ માટે $P(A)=\frac{1}{2}, P(A \cup B)=\frac{3}{5}$ અને $\mathrm{P}(\mathrm{B})=p .$ આપેલ છે. જો ઘટનાઓ નિરપેક્ષ હોય તો $p$ માં શોધો.