એક ખોખામાં $10 $ કાળા રંગના અને $8$ લાલ રંગના દડા છે. તે ખોખામાંથી બે દડા યાદચ્છિક રીતે પુરવણી સહિત પસંદ કરવામાં આવે છે. બંને દડા લાલ રંગના હોય તેની સંભાવના શોધો.
Total number of balls $=18$
Number of red balls $=8$
Number of black balls $=10$
Probability of getting a red ball in the first draw $=\frac{8}{18}=\frac{4}{9}$
The ball is replaced after the first draw.
$\therefore$ Probability of getting a red ball in the second draw $=\frac{8}{18}=\frac{4}{9}$
Therefore, probability of getting both the balls red $=\frac{4}{9} \times \frac{4}{9}=\frac{16}{81}$
ત્રણ ઘટનાઓ $A,B $ અને $C$ માટે $P(A $ અથવા $B$ માંથી ફકત એક બને) $ = P(B$ અથવા $C$ માંથી ફકત એક બને $)= P( A$ અથવા $C$ માંથી ફકત એક બને) =$\;\frac{1}{4}$ તથા $P$ (તમામ ત્રણેય ઘટનાઓ એક સાથે બને) = $\frac{1}{{16}}$ તો ઓછામાં ઓછી એક ઘટના બને તેની સંભાવના . . . છે. .
વિદ્યુત યંત્રના ભાગોનું જોડાણ બે ઉપરચનાઓ $A$ અને $B$ ધરાવે છે. અગાઉની ચકાસવાની કાર્યપ્રણાલી પરથી નીચેની સંભાવનાઓ જ્ઞાત છે તેમ ધારેલ છે :
$P(A$ નિષ્ફળ જાય) $= 0.2$
$P$ (ફક્ત $B$ નિષ્ફળ જાય) $= 0.15$
$P(A $ અને $B$ નિષ્ફળ જાય) $= 0.15$
નીચેની સંભાવનાઓ શોધો :
$P(A $ એકલી નિષ્ફળ જાય)
જો $A$ અને $B$ બે ઘટના છે કે જેથી $P\overline {(A \cup B)} = \frac{1}{6},P(A \cap B) = \frac{1}{4}$ અને $P(\bar A) = \frac{1}{4},$ કે જ્યાં $\bar A$ એ ઘટના $A$ ની પૂરક ઘટના છે તો ઘટનાઓ $A$ અને $B$ એ . . . થાય .
વિર્ધાર્થીંને પ્રથમ, દ્વિતીય કે તૃત્તીય ગ્રેડમાં પાસ થાય કે ઘટનાઓ $A, B$ અને $C$ ની સંભાવનાઓ અનક્રમે $1/10, 3/5$ અને $1/4$ હોય, તો તે નાપાસ (ચોથા ગ્રેડ) થાય તેની સંભાવના ……. છે.
પત્તાના ઢગલામાંથી યાર્દચ્છિક રીતે એક પત્તુ પસંદ કરવામાં આવે છે. આ પત્તુ લાલ રંગનું અથવા રાણી હોવાની સંભાવના કેટલી છે ?