In a hostel, $60 \%$ of the students read Hindi newspaper, $40 \%$ read English newspaper and $20 \%$ read both Hindi and English newspapers. A student is selected at random. If she reads English newspaper, find the probability that she reads Hindi newspaper.
$\mathrm{P}(\mathrm{H} \cup \mathrm{E})^{\prime}=1-\mathrm{P}(\mathrm{H} \cup \mathrm{E})$
$=1-\{\mathrm{P}(\mathrm{H})+\mathrm{P}(\mathrm{E})-\mathrm{P}(\mathrm{H} \cap \mathrm{E})\}$
$=1-\left(\frac{3}{5}+\frac{2}{5}-\frac{1}{5}\right)$
$=1-\frac{4}{5}$
$=\frac{1}{5}$
Probability that a random chosen student reads Hindi newspaper, if she reads English newspaper, is given by $\mathrm{P}(\mathrm{H} | \mathrm{E})$
$\mathrm{P}(\mathrm{H} | \mathrm{E})=\frac{\mathrm{P}(\mathrm{H} \cap E)}{\mathrm{P}(\mathrm{E})}$
$=\frac{\frac{1}{5}}{\frac{2}{5}}$
$=\frac{1}{2}$
Given $P(A)=\frac{3}{5}$ and $P(B)=\frac{1}{5}$. Find $P(A $ or $B),$ if $A$ and $B$ are mutually exclusive events.
A card is drawn from a pack of $52$ cards. A gambler bets that it is a spade or an ace. What are the odds against his winning this bet
Let $A$ and $B$ be independent events with $P(A)=0.3$ and $P(B)=0.4$. Find $P(A \cap B)$
If $A$ and $B$ are any two events, then $P(A \cup B) = $
For two given events $A$ and $B$, $P\,(A \cap B) = $