एक छात्रावास में $60 \%$ विद्यार्थी हींदी का, $40 \%$ अंग्रेज़ी का और $20 \%$ दोनों अखबार पढ़ते हैं। एक छात्रा को यादृच्छ्या चुना जाता है।

यदि वह हींदी का अखबार पढती है तो उसके अंग्रेजी का अखबार भी पढ़ने वाली होने की प्रायिकता ज्ञात कीजिए।

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$\mathrm{P}(\mathrm{H} \cup \mathrm{E})^{\prime}=1-\mathrm{P}(\mathrm{H} \cup \mathrm{E})$

$=1-\{\mathrm{P}(\mathrm{H})+\mathrm{P}(\mathrm{E})-\mathrm{P}(\mathrm{H} \cap \mathrm{E})\}$

$=1-\left(\frac{3}{5}+\frac{2}{5}-\frac{1}{5}\right)$

$=1-\frac{4}{5}$

$=\frac{1}{5}$

Probability that a randomly chosen student reads English newspaper, if she reads Hindi newspaper, is given by $\mathrm{P}(\mathrm{E} | \mathrm{H})$

$\mathrm{P}(\mathrm{E} | \mathrm{H})=\frac{\mathrm{P}(\mathrm{E} \,\cap \,\mathrm{H})}{\mathrm{P}(\mathrm{H})}$

$=\frac{\frac{1}{5}}{\frac{3}{5}}$

$=\frac{1}{3}$

Similar Questions

सिद्ध कीजिए कि यदि $E$ और $F$ दो स्वतंत्र घटनाएँ हैं तो $E$ और $F ^{\prime}$ भी स्वतंत्र होंगी।

एक छात्रावास में $60 \%$ विद्यार्थी हींदी का, $40 \%$ अंग्रेज़ी का और $20 \%$ दोनों अखबार पढ़ते हैं। एक छात्रा को यादृच्छ्या चुना जाता है।

यदि वह अंग्रेज़ी का अखबार पढ़ती है तो उसके हींदी का अखबार भी पढने वाली होने की प्रायिकता ज्ञात कीजिए।

तीन घटनाओं $A, B$ एवं $C$ के लिये प्रायिकताओं $P$ ($A$ अथवा $B$ में केवल एक घटित होती है)= $P$ ($B$ अथवा $C$ में केवल एक घटित होती है) = $P$ ($A$ अथवा $C$ में केवल एक घटित होती है)= $p$ तथा $P$ (तीनों घटनाएँ एक साथ घटित होती हैं) $ = {p^2},$ जहाँ $0 < p < 1/2$ है। तीनों घटनाओं $A, B$ और $C$ में कम से कम एक के घटित होने की प्रायिकता है

  • [IIT 1996]

दो गेंद एक बॉक्स से बिना प्रतिस्थापित किए निकाली जाती है। बॉक्स में $10$ काली और $8$ लाल गेदें हैं तो प्रायिकता ज्ञात कीजिए प्रथम काली एवं दूसरी लाल हो।

यदि $A$ व $B$ दो घटनायें हैं। उनमें से ज्यादा से ज्यादा एक घटना के घटित होने की प्रायिकता है

  • [IIT 2002]