In a hostel, $60 \%$ of the students read Hindi newspaper, $40 \%$ read English newspaper and $20 \%$ read both Hindi and English newspapers. A student is selected at random. If she reads Hindi newspaper, find the probability that she reads English newspaper.
$\mathrm{P}(\mathrm{H} \cup \mathrm{E})^{\prime}=1-\mathrm{P}(\mathrm{H} \cup \mathrm{E})$
$=1-\{\mathrm{P}(\mathrm{H})+\mathrm{P}(\mathrm{E})-\mathrm{P}(\mathrm{H} \cap \mathrm{E})\}$
$=1-\left(\frac{3}{5}+\frac{2}{5}-\frac{1}{5}\right)$
$=1-\frac{4}{5}$
$=\frac{1}{5}$
Probability that a randomly chosen student reads English newspaper, if she reads Hindi newspaper, is given by $\mathrm{P}(\mathrm{E} | \mathrm{H})$
$\mathrm{P}(\mathrm{E} | \mathrm{H})=\frac{\mathrm{P}(\mathrm{E} \,\cap \,\mathrm{H})}{\mathrm{P}(\mathrm{H})}$
$=\frac{\frac{1}{5}}{\frac{3}{5}}$
$=\frac{1}{3}$
Let $A$,$B$ and $C$ be three events such that $P\left( {A \cap \bar B \cap \bar C} \right) = 0.6$, $P\left( A \right) = 0.8$ and $P\left( {\bar A \cap B \cap C} \right) = 0.1$, then the value of $P$(atleast two among $A$,$B$ and $C$ ) equals
Let $A$ and $B$ be events for which $P(A) = x$, $P(B) = y,$$P(A \cap B) = z,$ then $P(\bar A \cap B)$ equals
Let $A$ and $B$ are two events and $P(A') = 0.3$, $P(B) = 0.4,\,P(A \cap B') = 0.5$, then $P(A \cup B')$ is
If $A$ and $B$ are events such that $P(A \cup B) = 3/4,$ $P(A \cap B) = 1/4,$ $P(\bar A) = 2/3,$ then $P(\bar A \cap B)$ is
Given two independent events $A$ and $B$ such $P(A)=0.3,\, P(B)=0.6 .$ Find $P(A $ and not $B)$