एक छात्रावास में $60 \%$ विद्यार्थी हींदी का, $40 \%$ अंग्रेज़ी का और $20 \%$ दोनों अखबार पढ़ते हैं। एक छात्रा को यादृच्छ्या चुना जाता है।
प्रायिकता ज्ञात कीजिए कि वह न तो हींदी और न ही अंग्रेज़ी का अखबार पढती है।
Let $H$ denote the students who read Hindi newspaper and $E$ denote the students who read English newspaper.
It is given that, $\mathrm P(H)=60 \%=\frac{60}{100}=\frac{3}{5}$
$\mathrm{P}(\mathrm{E})=40 \%=\frac{40}{100}=\frac{2}{5}$
$P(H \cap E)=20 \%=\frac{20}{100}=\frac{1}{5}$
Probability that a student reads Hindi and English newspaper is,
$\mathrm{P}(\mathrm{H} \cup \mathrm{E})^{\prime}=1-\mathrm{P}(\mathrm{H} \cup \mathrm{E})$
$=1-\{\mathrm{P}(\mathrm{H})+\mathrm{P}(\mathrm{E})-\mathrm{P}(\mathrm{H} \cap \mathrm{E})\}$
$=1-\left(\frac{3}{5}+\frac{2}{5}-\frac{1}{5}\right)$
$=1-\frac{4}{5}$
$=\frac{1}{5}$
यदि $A$ तथा $B$ दो स्वतन्त्र घटनाएँ हों, तो $P\,(A + B) = $
यदि $A$ तथा $B$ दो ऐसी घटनाएँ हों कि $P\,(A + B) = \frac{5}{6},$ $P\,(AB) = \frac{1}{3}\,$ तथा $P\,(\bar A) = \frac{1}{2},$ तो घटनाएँ $A$ तथा $B$ हैं
एक शहर में $20\%$ लोग अंगे्रजी समाचार पत्र पढ़ते हैं, $40\%$ हिन्दी समाचार पत्र पढ़ते हैं एवं $5\%$ दोनों अखबार पढ़ते हैं, तो अखबार न पढ़ने वालों का प्रतिशत है
एक थैले में $5$ सफेद व $4$ काली गेंदें हैं तथा दूसरे थैले में $7$ सफेद व $9$ काली गेंदे हैैं। एक गेंद पहले थैले में से दूसरे थैले में रख दी जाती है और तब दूसरे थैले में से एक गेंद निकाली जाती है तो उसके सफेद होने की प्रायिकता है
$A$ और $B$ दो घटनाएँ इस प्रकार हैं कि $P ( A )=0.54, P ( B )=0.69$ और $P ( A \cap B )=0.35 .$
ज्ञात कीजिए
$P \left( A ^{\prime} \cap B ^{\prime}\right)$