एक छात्रावास में $60 \%$ विद्यार्थी हींदी का, $40 \%$ अंग्रेज़ी का और $20 \%$ दोनों अखबार पढ़ते हैं। एक छात्रा को यादृच्छ्या चुना जाता है।

प्रायिकता ज्ञात कीजिए कि वह न तो हींदी और न ही अंग्रेज़ी का अखबार पढती है।

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let $H$ denote the students who read Hindi newspaper and $E$ denote the students who read English newspaper.

It is given that, $\mathrm P(H)=60 \%=\frac{60}{100}=\frac{3}{5}$

$\mathrm{P}(\mathrm{E})=40 \%=\frac{40}{100}=\frac{2}{5}$

$P(H \cap E)=20 \%=\frac{20}{100}=\frac{1}{5}$

Probability that a student reads Hindi and English newspaper is,

$\mathrm{P}(\mathrm{H} \cup \mathrm{E})^{\prime}=1-\mathrm{P}(\mathrm{H} \cup \mathrm{E})$

$=1-\{\mathrm{P}(\mathrm{H})+\mathrm{P}(\mathrm{E})-\mathrm{P}(\mathrm{H} \cap \mathrm{E})\}$

$=1-\left(\frac{3}{5}+\frac{2}{5}-\frac{1}{5}\right)$

$=1-\frac{4}{5}$

$=\frac{1}{5}$

Similar Questions

तीन व्यक्ति $P, Q$ तथा $R$ स्वतंत्र रूप से एक निशाने को भेदने का प्रयास करते हैं। यदि उनके निशाने को भेद पाने की प्रायिकताएं क्रमशः $\frac{3}{4}, \frac{1}{2}$ तथा $\frac{5}{8}$ हैं, तो $P$ अथवा $Q$ के निशाना भेद पाने परन्तु $R$ के निशाना न भेद पाने की प्रायिकता है 

  • [JEE MAIN 2013]

एक विशेष समस्या को $A$ और $B$ द्वारा स्वतंत्र रूप से हल करने की प्रायिकताएँ क्रमश : $\frac{1}{2}$ और $\frac{1}{3}$ हैं। यदि दोनों, स्वतंत्र रूप से, समस्या हल करने का प्रयास करते हैं, तो प्रायिकता ज्ञात कीजिए कि उनमें से तथ्यत: कोई एक समस्या हल कर लेता है।

यदृच्छया चुने गये किसी लीप वर्ष में $53$ रविवार या $53$ सोमवार होने की प्रायिकता है

यदि $A$ तथा $B$ कोई दो घटनाएँ हों, तो उनमें से ठीक एक घटना के घटित होने की प्रायिकता है

  • [IIT 1984]

यदि $X$ के परीक्षा में फेल होने की प्रायिकता $0.3$ तथा $Y$ के फेल होने की प्रायिकता $0.2$ हो, तो या तो $X$ या $Y$ के फेल होने की प्रायिकता है

  • [IIT 1989]