એક છાત્રાલયમાં $60\%$ વિદ્યાર્થીઓ હિન્દી સમાચારપત્ર વાંચે છે, $40\%$ અંગ્રેજી સમાચારપત્ર વાંચે છે અને $20\%$ હિન્દી અને અંગ્રેજી બંને સમાચારપત્ર વાંચે છે. એક વિદ્યાર્થી યાદૈચ્છિક રીતે પસંદ કરવામાં આવ્યો. તે હિન્દી કે અંગ્રેજી પૈકી એક પણ સમાચારપત્ર વાંચતો ન હોય તેની સંભાવના શોધો.
Let $H$ denote the students who read Hindi newspaper and $E$ denote the students who read English newspaper.
It is given that, $\mathrm P(H)=60 \%=\frac{60}{100}=\frac{3}{5}$
$\mathrm{P}(\mathrm{E})=40 \%=\frac{40}{100}=\frac{2}{5}$
$P(H \cap E)=20 \%=\frac{20}{100}=\frac{1}{5}$
Probability that a student reads Hindi and English newspaper is,
$\mathrm{P}(\mathrm{H} \cup \mathrm{E})^{\prime}=1-\mathrm{P}(\mathrm{H} \cup \mathrm{E})$
$=1-\{\mathrm{P}(\mathrm{H})+\mathrm{P}(\mathrm{E})-\mathrm{P}(\mathrm{H} \cap \mathrm{E})\}$
$=1-\left(\frac{3}{5}+\frac{2}{5}-\frac{1}{5}\right)$
$=1-\frac{4}{5}$
$=\frac{1}{5}$
બે ઘટનાઓ $A$ અને $B$ માટે,$P\,(A \cap B) = $
વિદ્યુત યંત્રના ભાગોનું જોડાણ બે ઉપરચનાઓ $A$ અને $B$ ધરાવે છે. અગાઉની ચકાસવાની કાર્યપ્રણાલી પરથી નીચેની સંભાવનાઓ જ્ઞાત છે તેમ ધારેલ છે :
$P(A$ નિષ્ફળ જાય) $= 0.2$
$P$ (ફક્ત $B$ નિષ્ફળ જાય) $= 0.15$
$P(A $ અને $B$ નિષ્ફળ જાય) $= 0.15$
નીચેની સંભાવનાઓ શોધો :
$P(A $ એકલી નિષ્ફળ જાય)
ધારો કે, $A, B, C$ એ $3$ નિરપેક્ષ ઘટનાઓ એવી છે કે જેથી $P(A)\,\, = \,\,\frac{1}{3}\,,\,\,P(B)\,\, = \,\,\frac{1}{2}\,,\,\,P(C)\,\, = \,\,\frac{1}{4}\,.$ $3$ ઘટનાઓ પૈકી ચોક્કસ $2$ ઘટનાઓ બનવાની સંભાવના શોધો.
ત્રણ ઘટનાઓ $A, B$ અને $C,$ માટે $P($ માત્ર એકજ ઘટના $A$ અથવા $B$ બને $) = P \,($ માત્ર $B$ અથવા $C$ એક્જ બને $)= P \,($ માત્ર $C$ અથવા $A$ એકજ બને $)= p$ અને $P$ (ત્રણેય ઘટનાઓ એક્જ સાથે બને $) = {p^2},$ કે જ્યાં $0 < p < 1/2$. તો ત્રણેય ઘટનાઓ $A, B$ અને $C$ પૈકી ઓછામાં ઓછી એક્જ ઘટના બને તેની સંભાવના મેળવો.
જો $A$ અને $B$ એ બે સ્વત્રંત ઘટનાઓ એવી છે કે જેથી $P(A) > 0.5,\,P(B) > 0.5,\,P(A \cap \bar B) = \frac{3}{{25}},\,P(\bar A \cap B) = \frac{8}{{25}}$ થાય તો $P(A \cap B)$ ની કિમત મેળવો.