एक थैले में $5$ सफेद व $4$ काली गेंदें हैं तथा दूसरे थैले में $7$ सफेद व $9$ काली गेंदे हैैं। एक गेंद पहले थैले में से दूसरे थैले में रख दी जाती है और तब दूसरे थैले में से एक गेंद निकाली जाती है तो उसके सफेद होने की प्रायिकता है
$\frac{8}{{17}}$
$\frac{{40}}{{153}}$
$\frac{5}{9}$
$\frac{4}{9}$
यदि दो घटनाओं में $P(A \cup B) = 5/6$, $P({A^c}) = 5/6$, $P(B) = 2/3,$ तब $A$ तथा $B$ होंगी
$A$ और $B$ ऐसी घटनाएँ दी गई हैं जहाँ $P(A)=\frac{1}{2}, P(A \cup B)=\frac{3}{5}$ तथा $P ( B )=p$
$\bar{p}$ का मान ज्ञात कीजिए यदि घटनाएँ परस्पर अपवर्जी हैं।
माना $A$ तथा $B$ दो घटनायें इस प्रकार हैं कि दोनों में से मात्र एक के होने की प्रायिकता $\frac{2}{5}$ है तथा $A$ या $B$ के होने की प्रायिकता $\frac{1}{2}$ है, तो दोनों के एक साथ होने की प्रायिकता है :-
$A$ तथा $B$ एक यादृच्छिक प्रयोग की दो घटनाएँ हैं और $P\,(A) = 0.25$, $P\,(B) = 0.5$ तथा $P\,(A \cap B) = 0.15,$ तो $P\,(A \cap \bar B) = $
यदि $A$ तथा $B$ दो ऐसी घटनाएँ हों कि $P\,(A \cup B) = P\,(A \cap B),$ तो सत्य सम्बन्ध है