In a hostel, $60 \%$ of the students read Hindi newspaper, $40 \%$ read English newspaper and $20 \%$ read both Hindi and English newspapers. A student is selected at random Find the probability that she reads neither Hindi nor English newspapers.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let $H$ denote the students who read Hindi newspaper and $E$ denote the students who read English newspaper.

It is given that, $\mathrm P(H)=60 \%=\frac{60}{100}=\frac{3}{5}$

$\mathrm{P}(\mathrm{E})=40 \%=\frac{40}{100}=\frac{2}{5}$

$P(H \cap E)=20 \%=\frac{20}{100}=\frac{1}{5}$

Probability that a student reads Hindi and English newspaper is,

$\mathrm{P}(\mathrm{H} \cup \mathrm{E})^{\prime}=1-\mathrm{P}(\mathrm{H} \cup \mathrm{E})$

$=1-\{\mathrm{P}(\mathrm{H})+\mathrm{P}(\mathrm{E})-\mathrm{P}(\mathrm{H} \cap \mathrm{E})\}$

$=1-\left(\frac{3}{5}+\frac{2}{5}-\frac{1}{5}\right)$

$=1-\frac{4}{5}$

$=\frac{1}{5}$

Similar Questions

Given two independent events $A$ and $B$ such $P(A)=0.3,\, P(B)=0.6 .$ Find $P(A $ and not $B)$

If $A$ and $B$ are two events such that $P(A) = \frac{1}{2}$ and $P(B) = \frac{2}{3},$ then

One card is drawn from a pack of $52$ cards. The probability that it is a queen or heart is

$P(A \cup B) = P(A \cap B)$ if and only if the relation between $P(A)$ and $P(B)$ is

  • [IIT 1985]

Two students Anil and Ashima appeared in an examination. The probability that Anil will qualify the examination is $0.05$ and that Ashima will qualify the examination is $0.10 .$ The probability that both will qualify the examination is $0.02 .$ Find the probability that  Atleast one of them will not qualify the examination.