$70$ व्यक्तियों के समूह में, $37$ कॉफ़ी, $52$ चाय पसंद करते हैं और प्रत्येक व्यक्ति दोनों में से कम से कम एक पेय पसंद करता है, तो कितने व्यक्ति कॉफ़ी और चाय दोनों को पसंद करते हैं ?
Let $C$ denote the set of people who like coffee, and $T$ denote the set of people who like tea
$n(C \cup T)=70, n(C)=37, n(T)=52$
We know that:
$n(C \cup T)=n(C)+n(T)-n(C \cap T)$
$\therefore 70=37+52-n(C \cap T)$
$\Rightarrow 70=89-n(C \cap T)$
$\Rightarrow(C \cap T)=89-70=19$
Thus, $19$ people like both coffee and tea.
$35$ विद्यार्थियों की एक कक्षा में, $24$ क्रिकेट खेलना पसंद करते हैं और $16$ फुटबाल खेलना पसंद् करते हैं। इसके अतिरिक्त प्रत्येक विद्यार्थी कम से कम एक खेल अवश्य खेलना पसंद करता है। कितने विद्यार्थी क्रिकेट और फुटबाल दोनों खेलना पसंद करते हैं ?
मान लीजिए कि $X =\{$ राम, गीता, अकबर $\}$ कक्षा $XI$ के विद्यार्थियों का जो विद्यालय की हाकी टीम में हैं, एक समुच्चय है। मान लीजिए कि $Y =\{$ गीता, डेविड, अशोक $\}$ कक्षा $XI$ के विद्यार्थियों का, जो विद्यालय की फुटबाल टीम में हैं, एक समुच्चय है। $X \cup Y$ ज्ञात कीजिए और इस समुच्चय की व्याख्या कीजिए।
यदि किसी शहर के $ 10,000$ परिवार में से $ 40\%$ परिवार समाचार पत्र $A, 20\%$ समाचार पत्र $B, 10\%$ समाचार पत्र $C$ तथा $5\% $ परिवार $A$ और $B, 3\% $ परिवार $B$ और $C$ तथा $4\%$ परिवार $A $ और $C$ खरीदते है। यदि $2\%$ परिवार सभी तीन समाचार पत्र खरीदते हैं, तो उन परिवारों की संख्या क्या होगी जो केवल $A$ खरीदते हैं
विद्यार्थियों के एक समूह में, $100$ विद्यार्थी हिंदी, $50$ विद्यार्थी अंग्रेज़ी तथा $25$ विद्यार्थी दोनों भाषाओं को जानते हैं। विद्यार्थियों में से प्रत्येक या तो हिंदी या अंग्रेज़ी जानता है। समूह में कुल कितने विद्यार्थी हैं ?
एक बाजार अनुसंधान समूह ने $1000$ उपभोक्ताओं का सर्वेक्षण किया और सूचित किया कि $720$ उपभोक्ताओं ने उत्पाद $A$ तथा $450$ उपभोक्ताओं ने उत्पाद $B$ पसंद् किया। दोनों उत्पादों को पसंद करने वाले उपभोक्ताओं की न्यूनतम संख्या क्या है ?