In a group of $70$ people, $37$ like coffee, $52$ like tea and each person likes at least one of the two drinks. How many people like both coffee and tea?

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let $C$ denote the set of people who like coffee, and $T$ denote the set of people who like tea

$n(C \cup T)=70, n(C)=37, n(T)=52$

We know that:

$n(C \cup T)=n(C)+n(T)-n(C \cap T)$

$\therefore 70=37+52-n(C \cap T)$

$\Rightarrow 70=89-n(C \cap T)$

$\Rightarrow(C \cap T)=89-70=19$

Thus, $19$ people like both coffee and tea.

Similar Questions

There are $200$ individuals with a skin disorder, $120$ had been exposed to the chemical $C _{1}, 50$ to chemical $C _{2},$ and $30$ to both the chemicals $C _{1}$ and $C _{2} .$ Find the number of individuals exposed to

Chemical $C_{1}$ or chemical $C_{2}$

In a class of $100$ students, $55$ students have passed in Mathematics and $67$ students have passed in Physics. Then the number of students who have passed in Physics only is

Let $X = \{ $ Ram ,Geeta, Akbar $\} $ be the set of students of Class $\mathrm{XI}$, who are in school hockey team. Let $Y = \{ {\rm{ }}$ Geeta, David, Ashok $\} $ be the set of students from Class $\mathrm{XI}$ who are in the school football team. Find $X \cup Y$ and interpret the set.

Two newspaper $A$ and $B$ are published in a city. It is known that $25\%$ of the city populations reads $A$ and $20\%$ reads $B$ while $8\%$ reads both $A$ and $B$. Further, $30\%$ of those who read $A$ but not $B$ look into advertisements and $40\%$ of those who read $B$ but not $A$ also look into advertisements, while $50\%$ of those who read both $A$and $B$ look into advertisements. Then the percentage of the population who look into advertisement is

  • [JEE MAIN 2019]

In a town of $10,000$ families it was found that $40\%$ family buy newspaper $A, 20\%$ buy newspaper $B$ and $10\%$ families buy newspaper $C, 5\%$ families buy $A$ and $B, 3\%$ buy $B$ and $C$ and $4\%$ buy $A$ and $C$. If $2\%$ families buy all the three newspapers, then number of families which buy $A$ only is