એક સમિતિમાં $50$ વ્યક્તિઓ ફ્રેંચ બોલે છે, $20$ સ્પેનિશ બોલે છે અને $10$ વ્યક્તિઓ બંને સ્પેનિશ અને ફ્રેંચ બંને બોલે છે. કેટલી વ્યક્તિઓ આ બે ભાષાઓમાંથી ઓછામાં ઓછી એક ભાષા બોલી શકે છે ?
Let $F$ be the set of people in the committee who speak French, and $S$ be the set of people in the committee who speak Spanish
$\therefore n(F)=50, n(S)=20, n(S \cap F)=10$
We know that:
$n(S \cup F)=n(S)+n(F)-n(S \cap F)$
$=20+50-10$
$=70-10=60$
Thus, $60$ people in the committee speak at least one of the two languages.
ચામડીની વ્યાધિવાળી $200$ વ્યક્તિઓ છે. $120$ વ્યક્તિઓને રસાયણ $C _{1}$ અને $50$ વ્યક્તિઓને રસાયણ $C _{2}$ ની અસર માલૂમ પડી અને $30$ ને બંને રસાયણો $C _{1}$ અને $C _{2}$ ની અસર માલૂમ પડી. રસાયણ $C _{1}$ ની અસર હોય, પરંતુ રસાયણ $C _{2}$ ની અસર ન હોય તેવી વ્યક્તિઓની સંખ્યા શોધો.
$40$ વિદ્યાર્થીઓનો એક સમૂહ $3$ વિષયો - ગણિતશાસ્ત્ર, ભૌતિકશાસ્ત્ર અને રસાયણશાસ્ત્ર ની પરીક્ષામાં ઉપસ્થિત થાય છે. એવું જોવામાં આવ્યુ છે કે બધા જ વિદ્યાર્થીઓ ઓછામાં ઓછા એક વિષયમાં ઉતીર્ણ થયા છે, $20$ વિદ્યાર્થીઓ ગણિતશાસ્ત્રમાં ઉતીર્ણ થયા છે, $25$ વિદ્યાર્થીઓ ભૌતિકશાસ્ત્રમાં ઉતીર્ણ થયા છે, $16$ વિદ્યાર્થીઓ રસાયણશાસ્ત્રમાં ઉતીર્ણ થયા છે, વધુમાં વધુ $11$ વિદ્યાર્થીઓ ગણિતશાસ્ત્ર અને ભૌતિકશાસ્ત્રમાં બંનેમાં ઉતીર્ણ થયા છે, વધુમાં વધુ $15$ વિદ્યાર્થીઓ ભૌતિકશાસ્ત્ર અને રસાયણશાસ્ન્ર માં ઉતીર્ણ થયા, વધુમાં વધુ $15$ વિદ્યાર્થીઓ ગણિતશાસ્ત્ર અને રસાયણશાસ્ત્રમાં ઉતીર્ણ થયા છે. ત્રણેય વિષયમાં ઉતીર્ણ થનાર વિદ્યાર્થીઓની મહત્તમ સંખ્યા___________ છે.
એક વર્ગમાં $55$ વિર્ધાથી છે.જો ગણિત પંસંદ કરલે વિર્ધાથીની સંખ્યા $23 , 24$ એ ભૈતિક વિજ્ઞાનમાં ,$19$ એ રસાયણ વિજ્ઞાનમાં ,$12$ એ ભૈતિક વિજ્ઞાન અને ગણિત, $9$ એ ગણિત અને રસાયણ વિજ્ઞાન, $7$ એ ભૈતિક વિજ્ઞાન અને રસાયણ વિજ્ઞાન ,અને $4$ વિર્ધાથી બધાજ વિષય પંસંદ કરલે છે,તો માત્ર એકજ વિષય પંસંદ કરેલ કુલ વિર્ધાથીની સંખ્યા મેળવો.
એક વર્ગમાં $30$ વિર્ધાથી છે.જો $12$ એ મિસ્ત્રી કામ , $16$ એ ભૈતિક વિજ્ઞાન , $18$ એ ઇતિહાસ વિષય પસંદ કરે છે.જો $30$ વિર્ધાથી પૈકી દરેકે ઓછામાં ઓછો એક વિષય પસંદ કરે છે અને કોઇપણ વિર્ધાથી ત્રણેય વિષય પસંદ ન કરે તો બે વિષય પસંદ કરેલ વિર્ધાથીની સંખ્યા મેળવો.
એક સર્વે મુજબ $63\%$ અમેરીકનને ચીઝ અને$76\%$ ને સફરજન પસંદ છે. જો $x\%$ ને ચીઝ અને સફરજન પસંદ હોય તો . . . .