એક વર્ગમાં $55$ વિર્ધાથી છે.જો ગણિત પંસંદ કરલે વિર્ધાથીની સંખ્યા $23 , 24$ એ ભૈતિક વિજ્ઞાનમાં ,$19$ એ રસાયણ વિજ્ઞાનમાં ,$12$ એ ભૈતિક વિજ્ઞાન અને ગણિત, $9$ એ ગણિત અને રસાયણ વિજ્ઞાન, $7$ એ ભૈતિક વિજ્ઞાન અને રસાયણ વિજ્ઞાન ,અને $4$ વિર્ધાથી બધાજ વિષય પંસંદ કરલે છે,તો માત્ર એકજ વિષય પંસંદ કરેલ કુલ વિર્ધાથીની સંખ્યા મેળવો.

  • A

    $6$

  • B

    $9$

  • C

    $7$

  • D

    $22$

Similar Questions

એક ઉસ્ચતર માધ્યમિક શાળાના $220$ વિદ્યાર્થાઓના સર્વેક્ષણમાં, એવું જોવામાં આવ્યુ છે કે ઓછામાં ઓછા $125$ તથા વધુમા વધુ $130$ વિદ્યાથીઓ ગણિત શાસ્ત્ર ભણે છે; ઓછામાં ઓછા $85$ અને વધુમા વધુ $95$ ભૌતિકશાસ્ત્ર ભણે છે; ઓછામાં ઓછા $75$ અને વધુમા વધુ $90$ ૨સાયણશાસ્ત્ર ભણે છે; $30$ બન્ને ભૌતિકશાસ્ત્ર અને રસાયણશાસ્ત્ર ભણે છે; $50$ બન્ને રસાયણશાસ્ત્ર અને ગણિતશાસ્ર ભણે છે; $40$ બન્ને ગણિતશાસ્ર અને ભૌતિકશાસ્ત્ર ભણે છે તથા $10$ આ પૈકીના કોઈ પણ વિષયો ભણતા નથી. ધારોકે $\mathrm{m}$ અને $\mathrm{n}$ અનુક્રમે આ ત્રણે વિષયો ભણતા વિદ્યાર્થાઓની ઓછામાં ઓછી તથા વધુમાં વધુ સંખ્યા છે. તો $\mathrm{m}+\mathrm{n}=$ ...........

  • [JEE MAIN 2024]

$140$ વિધ્યાર્થીઑ ના વર્ગ માં વિધ્યાર્થીઑ ને $1$ to $140$ નંબર આપેલ છે બધા યુગ્મ નંબર વાળા વિધ્યાર્થીઓ ગણિત વિષય  પસંદ કરે છે , જે વિધ્યાર્થી નો નંબર $3$ વડે વિભાજય છે તે ભૌતિકવિજ્ઞાન પસંદ કરે છે અને જે વિધ્યાર્થીઓ ના નંબર $5$ વડે વિભાજય છે તે રસાયણ વિજ્ઞાન પસંદ કરે છે તો કેટલા વિધ્યાર્થીઓ ત્રણેય વિષય માથી એક પણ વિષય પસંદ કરતા નથી.

  • [JEE MAIN 2019]

એક વર્ગમાં $175$ વિર્ધાથી છે. જો $100$ વિર્ધાથી ગણિત ,$70$ વિર્ધાથી ભૈતિક વિજ્ઞાન ,$40$ વિર્ધાથી રસાયણ વિજ્ઞાન અને $30$ વિર્ધાથી ગણિત અને ભૈતિક વિજ્ઞાન , $28$ વિર્ધાથી ગણિત અને રસાયણ વિજ્ઞાન , $23$ વિર્ધાથી ભૈતિક વિજ્ઞાન અને રસાયણ વિજ્ઞાન , અને $18$ વિર્ધાથી બધાજ  વિષય પસંદ કરે છે. તો માત્ર ગણિત વિષય પસંદ કરેલ વિર્ધાથીની સંખ્યા મેળવો.

એક શહેરમાં $10,000$ પરિવાર રહે છે કે જેમાં $40\%$ પરિવાર સામાયિક $A , 20\%$ પરિવાર સામાયિક $B ,10\%$ પરિવાર સામાયિક $C , 5\%$ પરિવાર સામાયિક $A$ અને $B, 3\%$ પરિવાર સામાયિક $B$ અને $C , 4\%$ પરિવાર સામાયિક $A$ અને $C$ નો ઉપયોગ કરે છે.જો $2\%$ પરિવાર બધાજ સામાયિકનો ઉપયોગ કરે છે તો . . .  . પરિવાર માત્ર સામાયિક $A$ નો ઉપયોગ કરે છે.

$65$ વ્યક્તિઓના જૂથમાં, $40$ ક્રિકેટ પસંદ કરે છે, $10$ ક્રિકેટ અને ટેનિસ બંને પસંદ કરે છે. કેટલી વ્યક્તિઓ માત્ર ટેનિસ પસંદ કરે છે પરંતુ ક્રિકેટ પસંદ કરતા નથી ? કેટલા ટેનિસ પસંદ કરે છે ? $65$ પૈકી દરેક વ્યક્તિ આ બે પૈકી ઓછામાં ઓછી એક રમત પસંદ કરે છે.