ધારો કે સુરેખ સમીકરણ સંહતિ
$x+y+\alpha z=2$
$3 x+y+z=4$
$x+2 z=1$
ને અનન્ય ઉએેલ $\left( x ^{*}, y ^{*}, z ^{*}\right)$ છે. જો $\left(\alpha, x ^{*}\right),\left( y ^{*}, \alpha\right)$ અને $\left( x ^{*},- y ^{*}\right)$ તો $\alpha$સમરેખ બિંદુઓ હોય. તો $\alpha$ ની તમામ શક્ય કિંમતોનાં નિરપેક્ષ મૂલ્યોનો સરવાળો ........ છે.
$4$
$3$
$2$
$1$
સમીકરણની સંહતિ $(k + 1)x + 8y = 4k,$ $kx + (k + 3)y = 3k - 1$ ને અનંત ઉકેલ હોય, તો $k$ ની કિમત મેળવો.
$\theta \in(0,4 \pi)$ ની કેટલી કિમંતો માટે સમીકરણ સંહતિ $3(\sin 3 \theta) x-y+z=2$, $3(\cos 2 \theta) x+4 y+3 z=3$, $6 x+7 y+7 z=9$ ને એકપણ ઉકેલ ન હોય.
જો સુરેખ રેખાઓની સહંતિ $x-2 y+z=-4 $ ; $2 x+\alpha y+3 z=5 $ ; $3 x-y+\beta z=3$ ને અનંત ઉકેલ હોય તો $12 \alpha+13 \beta$ ની કિમંત મેળવો.
સમીકરણ $\left| {\,\begin{array}{*{20}{c}}1&4&{20}\\1&{ - 2}&5\\1&{2x}&{5{x^2}}\end{array}\,} \right| = 0$ ના બીજ મેળવો.
જો $a_i^2 + b_i^2 + c_i^2 = 1,\,i = 1,2,3$ અને $a_ia_j + b_ib_j +c_ic_j = 0$ $\left( {i \ne j,i,j = 1,2,3} \right)$ હોય તો નિશ્ચયક $\left| {\begin{array}{*{20}{c}}
{{a_1}}&{{a_2}}&{{a_3}} \\
{{b_1}}&{{b_2}}&{{b_3}} \\
{{c_1}}&{{c_2}}&{{c_3}}
\end{array}} \right|$ ની કિમંત મેળવો.