સમાન મૂલ્ય $R$ ધરાવતા બે સદીશો $\vec{A}$ અને $\vec{B}$ વચ્ચેનો ખૂણો $\theta$ છે તો

  • [JEE MAIN 2024]
  • A

    $|\overrightarrow{\mathrm{A}}-\overrightarrow{\mathrm{B}}|=\sqrt{2} \mathrm{R} \sin \left(\frac{\theta}{2}\right)$

  • B

    $|\overrightarrow{\mathrm{A}}+\overrightarrow{\mathrm{B}}|=2 \mathrm{R} \sin \left(\frac{\theta}{2}\right)$

  • C

    $|\overrightarrow{\mathrm{A}}+\overrightarrow{\mathrm{B}}|=2 \mathrm{R} \cos \left(\frac{\theta}{2}\right)$

  • D

    $|\overrightarrow{\mathrm{A}}-\overrightarrow{\mathrm{B}}|=2 R \cos \left(\frac{\theta}{2}\right)$

Similar Questions

$\mathop A\limits^ \to + \mathop B\limits^ \to  \,$ અને $\mathop A\limits^ \to   - \mathop B\limits^ \to  \,$  નું મૂલ્ય ક્યારે સમાન થાય ? 

બે બળો $\overrightarrow{\mathrm{P}}$ અને $\overrightarrow{\mathrm{Q}}$ ના સરવાળાનું પરિણામી  $\overrightarrow{\mathrm{R}}$ એવી રીતે મળે છે કે જેથી $|\overrightarrow{\mathrm{R}}|=|\overrightarrow{\mathrm{P}}| .$ તો $2 \overrightarrow{\mathrm{P}}$ અને $\overrightarrow{\mathrm{Q}}$ ના પરિણામી એ $\overrightarrow{\mathrm{Q}}$ સાથે બનાવેલો ખૂણો (ડિગ્રીમાં) કેટલો હશે?

  • [JEE MAIN 2020]

સદિશ $\vec{A}$ અને $\vec{B}$ એવા છે કે જેથી $|\vec{A}+\vec{B}|=|\vec{A}-\vec{B}|$ થાય. બે સદિશ વચ્ચેનો ખૂણો કેટલો હશે?

  • [AIPMT 1996]

સદિશ $\overrightarrow a $ ને $d\theta $ખૂણે ફેરવતાં $|\Delta \overrightarrow a |$ અને $\Delta a$ મેળવો.

બે સદિશોના પરિણામી સદિશનું મૂલ્ય અને દિશા શોધવાનું સમીકરણ લખો.