સદિશ $\vec{A}$ અને $\vec{B}$ એવા છે કે જેથી $|\vec{A}+\vec{B}|=|\vec{A}-\vec{B}|$ થાય. બે સદિશ વચ્ચેનો ખૂણો કેટલો હશે?
$60$
$75$
$45$
$90$
જો વર્તુળની ત્રિજયા $R$ હોય તો સદિશો $ \overrightarrow {OA} ,\,\overrightarrow {OB} $ અને $ \overrightarrow {OC} $ નો પરિણામી સદિશ કેટલો થશે?
$10\, N$ અને $6\, N$ બે બળોનો સદિશ સરવાળો ......... $N$ થઈ શકે નહીં
બે સદિશોની બાદબાકીનો અર્થ શું કરી શકાય ?
સદિશોના સરવાળા માટે ક્રમનો નિયમ (સમક્રમી છે) સમજાવો.
વિધાન $A$ : જો $A, B, C, D$ એ અર્ધ વર્તુળ કેન્દ્ર $O$ પર ચાર બિંદુઓ એવા છે કે જેથી $|\overrightarrow{{AB}}|=|\overrightarrow{{BC}}|=|\overrightarrow{{CD}}|$ હોય, તો $\overrightarrow{{AB}}+\overrightarrow{{AC}}+\overrightarrow{{AD}}=4 \overrightarrow{{AO}}+\overrightarrow{{OB}}+\overrightarrow{{OC}}$
કારણ $R$ : સદીશ સરવાળાનો બહુકોણનો નિયમ $\overrightarrow{A B}+\overrightarrow{B C}+\overrightarrow{C D}+\overrightarrow{A D}=2 \overrightarrow{A O}$ આપે છે.
ઉપરોક્ત વિધાનોના સંદર્ભમાં, નીચે આપેલા વિકલ્પો પૈકી સૌથી વધારે યોગ્ય જવાબ પસંદ કરો.